Impact sensor provides athletic support

May 14, 2010

As athletes strive for perfection, sports scientists need to exploit every technological advance to help them achieve that goal. Researchers in New Zealand have now developed a new type of wearable impact sensor based that can provide much needed information about the stresses and strains on limbs for rugby players, high jumpers, and runners.

Writing in the International Journal of Biomechatronics and Biomedical Robotics, Kean Aw and colleagues in the department of Mechanical Engineering, at The University of Auckland, explain how known as ionic polymer metallic composites (IPMCs), produce an electrical current when compressed. These materials are flexible, lightweight and durable and so can be fashioned into wearable sensor devices to allow sports scientists to monitor directly impact forces without interfering with an athlete's performance.

IPMCs are usually made from an ionic polymer, such as Nafion or Flemion, which is coated with a conducting metal, platinum or gold. Previously, researchers have experimented with IPMC materials as because applying a voltage causes them to flex as ions migrate causing electrostatic repulsion within the . The opposite effect, in which ion movement generated a voltage when the material is flexed, is exploited in the .

Impact sensors made from IPMC could be inserted into footwear to measure the impact energy of a foot striking a hard surface or they might be placed in a rugby player's shoulder pads to measure collision impacts or forces exerted during a rugby scrum. The data obtained from these sensors allows the athlete's performance to be quantified and analyzed in terms of the forces acting on their body with a view to improving their and also reducing the potential for injuries.

The researchers have tested IPMC sensors in the laboratory and compared the readings obtained for different applied forces with those from more conventional measurement techniques. Their analysis of the tests reveals that the IPMC sensors would have to be calibrated with a high and a low impact force prior to testing with a performing athlete. However, the voltage spike and the slope of the voltage measurement obtained with an IPMC can be readily converted into an impact force measurement to within 10% accuracy.

Explore further: Faradair team determined to make hybrid BEHA fly

More information: "Ionic polymer metallic composite as wearable impact sensor for sport science" International Journal of Biomechatronics and Biomedical Robotics 2010, 1, 88-92. dx.doi.org/10.1504/IJBBR.2010.033025

Related Stories

Jellyfish Robot Swims Like its Biological Counterpart

Jun 26, 2009

(PhysOrg.com) -- "Jellyfish are one of the most awesome marine animals, doing a spectacular and psychedelic dance in water," explain engineers Sung-Weon Yeom and Il-Kwon Oh from Chonnam National University ...

Novel Zigzag Shape Gives Sensors Magnetic Appeal

Jan 05, 2005

Scientists at the National Institute of Standards and Technology (NIST) have designed tiny magnetic sensors in a "zigzag" shape that are simpler in design and likely will be cheaper to make than conventional ...

Soft Materials Buckle Up for Measurement

Jun 22, 2006

Buckling under pressure can be a good thing, say materials scientists at the National Institute of Standards and Technology. Writing in the June 13 issue of Macromolecules, they report a new method to evalua ...

Recommended for you

Faradair team determined to make hybrid BEHA fly

13 hours ago

Aiming to transform their concept into a real success, the Faradair team behind a six-seat Bio-Electric-Hybrid-Aircraft (BEHA) have taken this hybrid aircraft project into a crowdfunding campaign on Kickstarter. ...

How polymer banknotes were invented

Nov 26, 2014

The Reserve Bank of Australia (RBA) and CSIRO's 20-year "bank project" resulted in the introduction of the polymer banknote – the first ever of its kind, and the most secure form of currency in the world. ...

Enabling the hearing impaired to locate human speakers

Nov 26, 2014

New wireless microphones systems developed at EPFL should allow the hearing impaired to aurally identify, even with closed eyes, the location of the person speaking. This new technology will be used in classrooms ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.