You had me at hello: Frisky yeast know who to 'shmoo' after 2 minutes

Apr 18, 2010
You had me at hello: Frisky yeast know who to 'shmoo' after 2 minutes

(PhysOrg.com) -- Yeast cells decide whether to have sex with each other within two minutes of meeting, according to new research published today in Nature. One of the authors of the study, from Imperial College London, says the new insights into how yeast cells decide to mate could be helpful for researchers looking at how cancer cells and stem cells develop.

Yeasts are single-celled that scientists often use as model organisms, to help them understand how cells work. They usually reproduce asexually, by a process called budding, where a part of the cell is pinched off and becomes a new cell, identical to the original.

Sometimes, cells reproduce sexually, by mating. The mating process involves one cell of each sex joining together, then mixing their and splitting apart again. To do this, the cells each have to produce a nodule that they can join together, called a shmoo. The process of shmooing takes around two hours.

In today's new study, researchers from Imperial College London, Université de Montréal, McGill University and the University of Edinburgh determined that a yeast cell's decision to mate is controlled by a chemical change on a single protein. This change occurs two minutes after the cell detects a pheromone produced by the opposite sex, meaning that the decision to mate occurs much more quickly than scientists previously thought.

The researchers also found that in order for the mating process to be switched on, the pheromone must reach a critical concentration in the environment around the yeast cell. Below this concentration, the yeast cell continues to reproduce asexually.

"Shmooing is a very energy-intensive process for . We think this switching process at a certain pheromone concentration may have evolved to make sure the cells only get prepared for sexual reproduction if a mate is sufficiently close enough and able to mate," said Dr Vahid Shahrezaei, one of the authors of the study from the Department of Mathematics at Imperial College London.

The researchers used a highly complex mathematical model to determine what switches the mating process on and off, factoring in experimental data about the concentration of pheromones around the cell, the concentrations of different proteins relevant to mating inside the cell and how strongly these proteins bind together.

They believe their mathematical model can potentially be used to investigate the triggers that cause changes in other cells, such as stem cells becoming heart or bone cells, or normal cells becoming cancerous. This is because mammalian cells and yeast cells contain many of the same proteins, which work together in a chain reaction to trigger a decision in the cell. Therefore, today's new model could ultimately help researchers to develop new drugs and therapies.

Dr Shahrezaei said: "Yeast cells live in a very noisy environment - they are surrounded by different chemicals, including pheromones and food, and their own machinery inside the cell produces lots of biomolecules that interact with each other. We wanted to see how cells make sense of this noisy environment and work out what is happening, at a molecular level, to make a important decision like mating.

"By combining experiments and mathematical modelling that take lots of different factors into consideration, we have been able to show exactly what is happening inside a yeast cell to make it decide whether to mate with another cell. We also showed that the mechanism that leads the cells to make their decision is very robust, meaning it is not affected by molecular noise in the environment," added Dr Shahrezaei.

"Although yeast is dramatically different from people, at a molecular and cellular level we have a lot in common," said senior author Dr Stephen Michnick, a Université de Montréal biochemistry professor and Canada Research Chair in Integrative Genomics. "The same molecules that create the switching decision in yeast are found in very similar forms in human cells. Similar switching decisions to those made by yeast are made by during embryonic development and become dysfunctional in cancers."

Explore further: 'Hairclip' protein mechanism explained

More information: "The scaffold protein Ste5 directly controls a switch-like mating decision in yeast " Nature, 18 April 2010. www.nature.com/nature/journal/… ull/nature08946.html

Related Stories

Not so sweet: Over-consumption of sugar linked to aging

Mar 06, 2009

We know that lifespan can be extended in animals by restricting calories such as sugar intake. Now, according to a study published in the journal PLoS Genetics, Université de Montréal scientists have discov ...

Scientists discover role for dueling RNAs

Nov 16, 2006

Researchers have found that a class of RNA molecules, previously thought to have no function, may in fact protect sex cells from self-destructing. These findings will be published in the November 17 issue of the journal Cell.

Recommended for you

'Hairclip' protein mechanism explained

4 hours ago

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

Discovery in the fight against antibiotic-resistant bacteria

6 hours ago

For four years, researchers at Universite catholique de Louvain have been trying to find out how bacteria can withstand antibiotics, so as to be able to attack them more effectively. These researchers now understand how one ...

Stem cells born out of indecision

6 hours ago

Scientists at the University of Copenhagen have gained new insight into embryonic stem cells and how blocking their ability to make choices explains why they stay as stem cells in culture. The results have just been published ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

croghan27
not rated yet Apr 18, 2010
GEEZE - more of the women I know have decided not to mate with me inside the first 30 seconds .... :(

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.