Scientists track solar eruption all the way from the Sun to the Earth (w/ Video)

Apr 14, 2010 by Robert Massey
An image of the Sun taken in the extreme-ultraviolet (EUV) portion of the electromagnetic spectrum and shown in false colour by the Extreme-ultraviolet Imaging Telescope (EIT) aboard the SOlar and Heliospheric Observatory (SOHO). The active region responsible for the event can be seen by the associated dimming near the centre of the Sun's disc and the brightening of the active region itself just above and to the left of centre (North and East). Image: CDAW/ESA/NASA/Solar Physics.

(PhysOrg.com) -- An international group of solar and space scientists have built the most complete picture yet of the full impact of a large solar eruption, using instruments on the ground and in space to trace its journey from the Sun to the Earth. Dr Mario Bisi of Aberystwyth University presented the team's results, which include detailed images and a movie, on Tuesday 13th April at the RAS National Astronomy Meeting in Glasgow.

Coronal mass ejections (CMEs) are giant eruptions of the Sun's atmosphere from its 'surface' which are ejected out into space. They are many times larger than the Earth and typically contain over a billion tonnes of matter. CMEs travel away from the Sun at speeds of up to several million kilometres an hour (between 200 and 2000+ kilometres per second) and can impact on comets, asteroids, and planets - including the Earth.

Our planet is normally protected from CMEs by the terrestrial , but the twisted magnetic fields carried by CMEs can break through this protective shield, causing particles to stream down over the Earth's polar regions. They can also lead to displays of the northern and southern lights ( borealis and australis). But CMEs can also have less appealing consequences such as power outages on the ground, interference with communications, damage to Earth-orbiting satellites, as well as being a possible health risk to any astronauts who happen to be conducting a "space walk" at the time an event interacts with the Earth.

(a) Image of the disc of the Sun in the light of the hydrogen-alpha spectral line a couple of minutes after the onset of the event with model magnetic field lines superimposed. (b) A zoomed-in image of the active region concerned, again with a set of model magnetic field lines superimposed. (c) As in (b), but without the model superimposed showing the detail of the event in the image. Images taken using the Improved Solar Observing Optical Network (ISOON). Image: Predictive Science, Inc./Solar Physics.

The scientists came together to study one event in great detail in an attempt to gain an enhanced understanding of CMEs, to gain an insight into their prediction and more importantly, when and how they may interact with and cause effects on and in the vicinity of the Earth. After a painstaking analysis of the observations and measurements from all the different spacecraft and facilities on the ground, they have assembled an incredibly detailed picture.

They chose an eruption which lifted off from the Sun on the 13th May 2005 and headed in our direction. As it approached our planet, it interacted with the , the material which is constantly flowing out from the Sun at relatively steady rates. This particular CME deflected some of the solar wind northward as it headed in the direction of Earth and was itself slowed as a result of the solar wind ahead of it.

This video is not supported by your browser at this time.
The 3-D density reconstruction showing the shape of the ICME density structure as it moves from the Sun towards the Earth (all other features are removed). Movie: CASS-UCSD.

The mass expelled in the event was not that different from many other solar eruptions but its magnetic field was very intense, and as such, this event caused the largest geomagnetic storm (rapid changes in the shape and strength of the Earth's magnetic field) during the year 2005. At that time solar activity was in decline from the maximum period between the years 2002 and 2004 to the recent minimum between 2008 and 2010.

Data used to conduct this study came from many sources and in many forms. These included images of the and its vicinity from instruments aboard the SOHO spacecraft; radio-burst data from the Wind spacecraft, GOES satellite, and ground-based instrumentation, solar wind measurements from the SOHO, ACE, and Wind spacecraft and measurements of the Earth’s magnetosphere and ionosphere from the Cluster and IMAGE spacecraft and ground-based magnetometers.

At the start of the event the outburst was thought to be a ‘simple CME’, but the unprecedented coverage revealed it to be extremely complex, with many small parts which when looked at individually, make up the bigger picture from its launch through to its arrival at the Earth. The event was caused by multiple flare-type events near the solar surface which released magnetic energy and mass out into the solar wind in the form of the CME.


The material then travelled through interplanetary space out towards the Earth (in this phase it is described as an Interplanetary CME or ICME). With the magnetic field frozen inside it in the form of a ‘flux rope’, or ‘magnetic cloud’ (MC), when the ICME reached our planet it began to compress the Earth’s magnetic field in to a distance of about 38000 km (in comparison, the field on the Sun-ward side would normally extend to 95000 km). The arrival of the CME also caused some minor effects on satellites and communications as well as wonderful auroral displays.

Dr Bisi sees the new analysis as a key step forward in our understanding of the way solar eruptions develop and affect the Earth. “We learned an enormous amount from the 2005 event. Even an apparently simple CME turned out to be incredibly complex. And the intense reaction of the Earth’s magnetic field to a fast but not particularly powerful event was a surprise.”

‘We’re now also much better prepared for future events and if nothing else know how to handle such a large amount of data. All of this adds to our knowledge of the way CMEs originate, develop, and sometimes even have an impact on everyday life.”

Explore further: Amazing raw Cassini images from this week

Related Stories

Magnetic 'ropes' tie down solar eruptions (w/ Video)

Apr 12, 2010

(PhysOrg.com) -- Using data from the Hinode spacecraft, a team of researchers from University College London (UCL) have revealed an immense magnetic structure that erupted to produce a dramatic solar eruption ...

Solar Eruption Seen in Unprecedented Detail

May 27, 2008

On April 9, the Sun erupted and blasted a bubble of hot, ionized gas into the solar system. The eruption was observed in unprecedented detail by a fleet of spacecraft, revealing new features that are predicted by computer ...

STEREO Reveals the Anatomy of a Solar Storm in 3D

Apr 28, 2009

(PhysOrg.com) -- Observations from NASA's twin Solar Terrestrial Relations Observatory (STEREO) spacecraft have allowed scientists to reveal for the first time the speed, trajectory, and three-dimensional shape of solar explosions ...

Solar Fireworks Signal New Space Weather Mystery

May 24, 2005

The most intense burst of solar radiation in five decades accompanied a large solar flare on January 20. It shook space weather theory and highlighted the need for new forecasting techniques, according to several presentations ...

Recommended for you

Amazing raw Cassini images from this week

6 hours ago

When Saturn is at its closest to Earth, it's three-quarters of a billion miles away—or more than a billion kilometers! That makes these raw images from the ringed planet all the more remarkable.

Europe launches two navigation satellites

6 hours ago

Two satellites for Europe's rival to GPS were lifted into space on Friday to boost the Galileo constellation to six orbiters of a final 30, the European Space Agency (ESA) said.

SpaceX gets 10-year tax exemption for Texas site

7 hours ago

Cameron County commissioners have agreed to waive 10 years of county taxes as part of an agreement bringing the world's first commercial site for orbital rocket launches to the southernmost tip of Texas.

Voyager map details Neptune's strange moon Triton

8 hours ago

(Phys.org) —NASA's Voyager 2 spacecraft gave humanity its first close-up look at Neptune and its moon Triton in the summer of 1989. Like an old film, Voyager's historic footage of Triton has been "restored" ...

How the sun caused an aurora this week

9 hours ago

On the evening of Aug. 20, 2014, the International Space Station was flying past North America when it flew over the dazzling, green blue lights of an aurora. On board, astronaut Reid Wiseman captured this ...

User comments : 0