Solar Eruption Seen in Unprecedented Detail

May 27, 2008

On April 9, the Sun erupted and blasted a bubble of hot, ionized gas into the solar system. The eruption was observed in unprecedented detail by a fleet of spacecraft, revealing new features that are predicted by computer models but difficult to see in practice.

The observations are being discussed today in a press briefing at the American Geophysical Union Joint Assembly in Fort Lauderdale, Fla.

Such eruptions, called coronal mass ejections or CMEs, happen periodically and pose a potential threat to astronauts or satellites if aimed at Earth. Astronomers study these explosions in hope of being able to predict them and provide “space weather” forecasts. The April 9 CME occurred on the edge or limb of the Sun as viewed from Earth. As a result, the X-ray brightening (solar flare) usually associated with a CME was hidden from view, allowing sun-watching spacecraft to take longer exposures and uncover fainter structures than usual.

“Observations like this are very rare,” said Smithsonian astronomer Ed DeLuca, (Harvard-Smithsonian Center for Astrophysics) who is presenting the findings at today’s press briefing.

Using the Smithsonian-developed X-ray Telescope (XRT) aboard the Hinode sun-watching satellite, astronomers saw a spiral (helical) magnetic structure unwind as it left the Sun during the CME. Such unwinding can release energy as the magnetic field goes from a more twisted to a less twisted configuration, thereby helping to power the eruption.

Hours later, XRT revealed an inflow of material toward a feature that appears as a bright line—actually an object known as a current sheet seen edge-on. A current sheet is a thin, electrified sheet of gas where oppositely directed magnetic field lines annihilate one another in a process known as magnetic reconnection. The extended observations from XRT show that magnetic fields flow in toward the current sheet for many hours after the eruption, progressing first toward the sheet and then down to the sun’s surface.

Computer models of CMEs predict such movements of magnetic field lines, but observing them has proven difficult. The unique positioning of this CME on the sun’s limb allowed astronomers to measure those motions.

They also determined that the temperature of the current sheet is between 5 and 18 million degrees Fahrenheit, which matches previous measurements higher up in the corona by the Ultraviolet Coronagraph Spectrometer on the SOHO spacecraft.

A workshop is planned to study in detail the results from Hinode XRT, and other observations of this event by TRACE, STEREO, RHESSI, SOHO, and Hinode’s other instruments. Together, those observations will provide a more complete picture of the source and evolution of CMEs.

Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and the NSC (Norway).

Source: Harvard-Smithsonian Center for Astrophysics

Explore further: Soft magnetic material characterizations get a harder look

Related Stories

IceBridge launches two sets of antarctic flights

October 31, 2017

Scientists with NASA's longest-running airborne mission to map polar ice, Operation IceBridge, completed a successful science flight on Oct. 29, inaugurating their 2017 survey of Antarctic sea and land ice. For the first ...

Recommended for you

NASA telescope studies quirky comet 45P

November 22, 2017

When comet 45P zipped past Earth early in 2017, researchers observing from NASA's Infrared Telescope Facility, or IRTF, in Hawai'i gave the long-time trekker a thorough astronomical checkup. The results help fill in crucial ...

Uncovering the origins of galaxies' halos

November 21, 2017

Using the Subaru Telescope atop Maunakea, researchers have identified 11 dwarf galaxies and two star-containing halos in the outer region of a large spiral galaxy 25 million light-years away from Earth. The findings, published ...

Cassini image mosaic: A farewell to Saturn

November 21, 2017

In a fitting farewell to the planet that had been its home for over 13 years, the Cassini spacecraft took one last, lingering look at Saturn and its splendid rings during the final leg of its journey and snapped a series ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.