Scientists weather a space storm to find its origin

August 2, 2005
SOHO

A team of researchers from the UK and France used SOHO, ACE and the four Cluster spacecraft to study a huge eruption on the Sun, tracing its progress from birth to when it reached Earth.

The team, led by scientists from University College London, identified the source of a ‘coronal mass ejection’ (CME) and analysed how its magnetic field changes on its path to Earth.
Triggered by a massive explosion on the Sun with millions of times more energy than a nuclear bomb, these CMEs are blasts of gas that could engulf Earth. CMEs are caused by the collision of loop-like magnetic field lines with different polarities on the Sun’s surface.

“There’s been much speculation about the shape of the magnetic field and how it might change on its journey from the Sun to Earth. Using complementary satellites we have been able to see that the magnetic field changes very little on its journey,” said Dr Louise Harra, of UCL Mullard Space Science Laboratory.

Earth’s magnetic field, forming the magnetosphere, protects the planet from the full brunt of these blasts, but when the CME’s fields collide directly with it they can excite geomagnetic storms. In extreme cases they cause electrical power outages and damage to communications networks and satellites.

“If we are to successfully predict storms we need to be able to identify an Earth-directed coronal mass ejection as it leaves the Sun and work out how it evolves,” said Dr Harra.

The CME was detected on 20 January 2004 by the ESA/NASA SOHO spacecraft which was used to identify the source of the ejection.

Two days later, on its journey to Earth, the ejected magnetic field passed ESA’s four Cluster spacecraft. Their tetrahedral formation allowed the sampling of the speed and direction of the field. Similar measurements were made by NASA’s ACE spacecraft.

“SOHO and Cluster spacecraft are ideally suited to working together - SOHO 'sees' the explosions from the Sun and Cluster 'feels' them. Our next step is to predict the eruption of storms on the Sun,” said Dr Harra.

This direct measurement by SOHO, ACE and Cluster confirms previous Earth-bound predictions and takes researchers a step closer to forecasting these geomagnetic storms.

Source: ESA

Explore further: Eclipse 2017: Science from the moon's shadow

Related Stories

Eclipse 2017: Science from the moon's shadow

December 11, 2017

On Dec. 11, 2017, six researchers discussed initial findings based on observations of the Sun and on Earth gathered during the solar eclipse that stretched across North America on Aug. 21, 2017. Ranging from new information ...

Momentum braking in deep space

November 20, 2017

With a miniaturised space probe capable of accelerating to a quarter of the speed of light, we could reach Alpha Centauri, the nearest star, in 20 to 50 years. However, without a mechanism to slow it down, the space probe ...

Q&A about the toughness of NASA's webb telescope

December 6, 2017

Just how resilient does a space telescope have to be to survive both Earth's environment and the frigid, airless environment of space? Paul Geithner, the deputy project manager – technical for James Webb Space Telescope ...

Recommended for you

No alien 'signals' from cigar-shaped asteroid: researchers

December 14, 2017

No alien signals have been detected from an interstellar, cigar-shaped space rock discovered travelling through our Solar System in October, researchers listening for evidence of extraterrestrial technology said Thursday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.