Early warning system would predict space storms on Mars

Mar 29, 2010
Mars. Image: NASA

Space weather storms will make living on Mars challenging. The first group of colonists won't need umbrellas; they will need safe houses with 30-foot thick walls made of Martian clay that can withstand radiation storms.

NASA's vision for a permanent human presence on as soon as 2028 will need to address the danger posed by space weather storms. These cyclical winds carrying storms comprised of high-energy particles occur every 11 years, with waves lingering for approximately three years before dying down.

Part of the colonists' survival will depend on an that can predict these invisible, but deadly storms approaching Mars and signal an "all clear" when the danger passes, says Roger Dube, professor in the Chester F. Carlson Center for Imaging Science at Rochester Institute of Technology.

Dube has won NASA funding to develop a monitoring system that will provide this level of protection for people on Mars. As an additional benefit, the technology will give advanced warning of space storms threatening the critical infrastructure here on Earth, including the power grid, and sensitive communication satellites.

The system Dube envisions includes sensors and small solar observatories at the Mars colony or near the planetary pole for continual view of the solar surface. Special purpose satellites already positioned between the sun and the Earth will require advanced sensors and algorithms to detect signs of a dangerous flux of particles in order to provide warnings to both Earth and Mars.

"The technology we're building uses existing satellites and solar telescopes that are in orbit or in space," says Dube. "Our innovation will be to add artificial intelligence to the recognition of space storms. Initially the technology will be used to calculate the probability of the Earth being hit by a space weather storm, and once we've got that we'll determine the orbital calculations for Mars."

"Mars does not enjoy the defenses against such storms that Earth has," Dube notes.

During a , hurricane-force gusts hit Mars at full force. The winds, containing X-rays and particle rays emitted from solar flares and coronal mass ejections—clumps of high-energy particles belched by the sun—sweep past the planet's weak and atmosphere and strike the surface directly.

Even though the Earth's strong magnetic field provides significant protection against these storms, severe storms can momentarily penetrate that defense. Magnetic portals in the Earth's atmosphere have been observed that make our planet susceptible to the effects of severe space weather storms despite its strong magnetic field and atmospheric layers.

"When the wave of particles comes, it can be so intense that it actually bends the Earth's magnetic field way beyond where it naturally belongs to a point where the magnetic field lines nearly cross. When they bend that much, everything snaps and you get this huge deposit of charge at the poles that can go all the way to the equator," Dube says.

The charge is reflected in the ribbons of light known as the aurora borealis and carries the potential for creating havoc on Earth. The same high-energy particles can cripple the power grid by inducing currents into the network and can expose airplane passengers to radiation.

The Space Radiation Analysis Group at Johnson Space Center in Houston, in conjunction with the National Oceanic and Atmospheric Administration, regularly issues alerts to power suppliers and commercial airline carriers within 30 to 60 minutes of a storm. Dube thinks a better monitoring system could provide at least three days advanced warning for people living on Earth and Mars.

"We've got different types of data from different sources, such as images that show the coronal mass ejections," Dube says. "We've got satellites orbiting between the sun and the monitoring the particle flux, and we have historical records that take us back in time that tell us what things looked like in the past. We're looking to correlate all of these things together to see if there is a predictor that says, 'Here comes a storm.' "

Dube's team includes graduate student Santosh Suresh. His work visualizes data downloaded from three radio frequency receivers tuned to the ionosphere, the layer of Earth's atmosphere made up of a molecule-rich plasma charged by solar radiation. The ionosphere observatory at RIT functions as a station and consists of antennae attached to buildings on and around the RIT campus.

Explore further: SpaceX launches supplies to space station (Update)

Related Stories

Researchers set alarm for incoming space storms

May 27, 2009

(PhysOrg.com) -- A team of researchers at the University of Alberta in Edmonton has broken new ground in outer space by pinpointing the impact epicentre of an Earthbound space storm as it crashes into the ...

Halloween Storms of 2003 Still the Scariest

Oct 29, 2008

(PhysOrg.com) -- By the eerie light of a Halloween moon, while a chilly wind blows autumn-dry leaves askitter on bare and fingered branches, scary things can happen. Blood-sucking bats, creepy-crawly spiders, ...

NSF awards NJIT physicist $832,927 to study radio waves

Sep 27, 2004

Solar physicists want to know more about the sun's magnetic fields because they are cited as the cause behind potentially damaging outbursts such as solar flares and coronal mass ejections. Such ejections sometimes throw ...

Solar Fireworks Signal New Space Weather Mystery

May 24, 2005

The most intense burst of solar radiation in five decades accompanied a large solar flare on January 20. It shook space weather theory and highlighted the need for new forecasting techniques, according to several presentations ...

Recommended for you

NASA's space station Robonaut finally getting legs

7 hours ago

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Sun emits a mid-level solar flare

Apr 18, 2014

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...

Impact glass stores biodata for millions of years

Apr 18, 2014

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

The importance of plumes

Apr 18, 2014

The Hubble Space Telescope is famous for finding black holes. It can pick out thousands of galaxies in a patch of sky the size of a thumbprint. The most powerful space telescope ever built, the Hubble provided ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

A homemade solar lamp for developing countries

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...