NSF awards NJIT physicist $832,927 to study radio waves

September 27, 2004

Solar physicists want to know more about the sun's magnetic fields because they are cited as the cause behind potentially damaging outbursts such as solar flares and coronal mass ejections. Such ejections sometimes throw matter and magnetic fields toward Earth that can cause dangerous radiation levels in space, and, if they hit Earth, will trigger magnetic storms.

The National Science Foundation (NSF) has awarded Dale Gary, PhD, professor of physics at New Jersey Institute of Technology (NJIT) $832,927 to continue his research to develop a global network of 100 radio telescopes to learn more about radio waves from the sun. NSF awarded Gary $400,000 for this project in 2002. Radio waves are one means of studying the sun's magnetic fields. In astronomy circles, Gary's project has come to be known as the Frequency Agile Solar Radiotelescope (FASR) consortium.

"The FASR consortium will ultimately create 100 receiving satellite dishes," said Gary. "For now, however, we're still testing data to see the best way to build these telescopes. "That's why we're calling this current project a FASR test-bed. From it, we hope to learn more about how to design and build FASR, but we will also do some new solar science.

Project goals include the construction of a broadband (eight GHz), digital three-element interferometer system. The funding will also support research into broadband radio observations such as how to eliminate radio frequency interference. The rise in cell phones, wireless data systems, and communication satellites has made radio astronomy more of a challenge.

Gary and his team will build the new apparatus onto his solar telescope in his laboratory at Owens Valley, CA. Gary is part of a group of solar physicists at NJIT who are associated with Big Bear Solar Observatory (BBSO) in Big Bear, CA, managed by NJIT Distinguished Professor of Physics Phil Goode. Gary's laboratory is located near Big Bear. In 1997, NJIT took over management of BBSO from California Institute of Technology.

Magnetic storms are fueled by the collision between the coronal mass ejections and Earth's magnetic field. The collisions cause auroras, or northern lights, in regions normally limited to the Earth's poles. Particularly severe storms cause the auroras to spread southward and if they do, they can destroy power transformers and disrupt some forms of radio communication.

"Until very recently, magnetic storms have been difficult to predict," said Gary. There are many people, though, who want to know more about such patterns. Doing a better job of predicting the solar causes of these storms is one of the goals of the FASR facility.

Magnetic storms can impact airline flights, because they produce dangerous levels of radiation for crews who regularly fly certain routes. Crews, traversing Siberia, a known target for storms, are vulnerable. "Suddenly we see an increasing interest in learning how to forecast solar storms because airlines, aiming to protect employees, prefer to steer clear of them," said Gary. Space forecasters, who provide information on the space environment, and satellite operators, who use radio waves for communications broadcasts, also need the information. Power plant operators are also concerned.

Source: New Jersey Institute of Technology

Explore further: NASA detects solar flare pulses at Sun and Earth

Related Stories

NASA detects solar flare pulses at Sun and Earth

November 16, 2017

When our Sun erupts with giant explosions—such as bursts of radiation called solar flares—we know they can affect space throughout the solar system as well as near Earth. But monitoring their effects requires having observatories ...

Solar antics

September 20, 2017

The sun's recent activity has caught the interest of scientists and space weather forecasters worldwide, highlighting the need to keep a watchful eye on our star and its awesome power.

A solar flare recorded from Spain in 1886

October 19, 2017

Satellites have detected powerful solar flares in the last two months, but this phenomenon has been recorded for over a century. On 10 September 1886, at the age of just 17, a young amateur astronomer from Madrid, using a ...

Recommended for you

World's smallest tape recorder is built from microbes

November 23, 2017

Through a few clever molecular hacks, researchers at Columbia University Medical Center have converted a natural bacterial immune system into a microscopic data recorder, laying the groundwork for a new class of technologies ...

The world needs to rethink the value of water

November 23, 2017

Research led by Oxford University highlights the accelerating pressure on measuring, monitoring and managing water locally and globally. A new four-part framework is proposed to value water for sustainable development to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.