Genome mapping technique speeds process of finding specific genes

Mar 25, 2010 by Brian Wallheimer

(PhysOrg.com) -- A Purdue University scientist was part of a global team that has demonstrated a specialized mapping technique that could speed work in genomic fields by quickly finding genetic associations that shape an organism's observable characteristics.

A Purdue University scientist was part of a global team that has demonstrated a specialized that could speed work in genomic fields by quickly finding genetic associations that shape an organism's observable characteristics.

Using plants from 93 different Arabidopsis thaliana populations, a team led by the Gregor Mendel Institute of Plant Biology in Austria was able to find genetic associations among multiple , or traits, suggesting that the same genes or closely related genes controlled those traits. David E. Salt, a Purdue professor of and co-author of a Nature paper on the study released Wednesday (March 24), said the ability to find these types of genetic links could speed scientists' ability to find and isolate genes and understand their function.

"This may show that multiple phenotypes are being controlled by a specific region of the ," Salt said. "It helps us understand the mechanisms."

A traditional search for a gene responsible for a particular characteristic requires using plants that have been phenotyped, or identified by characteristics. They are then crossed with others, and the offspring are phenotyped.

Scientists then check for similarities in offsprings' genes with the desired trait. The process can be painstaking and time consuming because many thousands of individuals may need to be checked, Salt said.

Genome-wide association mapping compares the sequence of DNA in genomes of many individual plants or animals to find similarities that narrow the scope of the search for a particular gene.

"We can look for a region in the genome that is in common among the individuals," Salt said. "For plant biologists, it's a much more efficient way of getting to genes. And for animal biologists, where making test crosses is more difficult, this is critical."

In this study, specific differences in DNA, called single nucleotide polymorphisms, or SNPs, were compared at 250,000 sites across the genomes of many individuals. The genomes were matched up against specific traits for each individual in order to find SNPs that are associated with the trait of interest. If scientists were looking for plants that produce high seed yields, for example, they would compare the genomes of plants that have a range of seed yields. The places where the genomes match in individuals with high seed yields are possible locations of sought-after genes.

Genome-wide association mapping is a faster process because fewer plants - usually in the hundreds - need to be grown and phenotyped. Finding genetic associations among multiple phenotypes could reveal more information about how those characteristics might be connected.

Of the 107 phenotypes used in the research, Salt was responsible for phenotyping the for 18 characteristics, which focused on nutrient and micronutrient content. He said the next step in the research would be to test those associations to determine the responsible for particular plant characteristics.

Explore further: Groundbreaking study compares how bat and human cells respond to viruses

Related Stories

Searching for genes behind a trait

Mar 24, 2010

A method pioneered to find the genetic basis of human diseases also holds promise for locating the genes behind important traits in plants, according to a study published online March 24 by the journal Nature.

Salt-tolerant gene found in simple plant nothing to sneeze at

Apr 07, 2008

Whether a plant withers unproductively or thrives in salty conditions may now be better understood by biologists. The cellular mechanism that controls salt tolerance has been found in the arabidopsis plant by a Texas AgriLife ...

Gene's past could improve the future of rice

Jan 23, 2009

(PhysOrg.com) -- In an effort to improve rice varieties, a Purdue University researcher was part of a team that traced the evolutionary history of domesticated rice by using a process that focuses on one gene.

Simple soybean anything but - genetically, researcher says

Dec 16, 2008

(PhysOrg.com) -- Think humans are complex creatures? Consider the lowly soybean, said a Purdue University researcher. When it comes to genetics, the soybean plant is far more intricate than that of a human, said Scott Jackson, ...

Gene function discovery: Guilt by association

Jan 31, 2010

Scientists have created a new computational model that can be used to predict gene function of uncharacterized plant genes with unprecedented speed and accuracy. The network, dubbed AraNet, has over 19,600 ...

Recommended for you

Model evaluates where bioenergy crops grow best

3 hours ago

Farmers interested in bioenergy crops now have a resource to help them determine which kind of bioenergy crop would grow best in their regions and what kind of harvest to expect.

Vermicompost leachate improves tomato seedling growth

Nov 21, 2014

Worldwide, drought conditions, extreme temperatures, and high soil saline content all have negative effects on tomato crops. These natural processes reduce soil nutrient content and lifespan, result in reduced plant growth ...

Plant immunity comes at a price

Nov 21, 2014

Plants are under permanent attack by a multitude of pathogens. To win the battle against fungi, bacteria, viruses and other pathogens, they have developed a complex and effective immune system. And just as ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.