Salt-tolerant gene found in simple plant nothing to sneeze at

April 7, 2008

Whether a plant withers unproductively or thrives in salty conditions may now be better understood by biologists. The cellular mechanism that controls salt tolerance has been found in the arabidopsis plant by a Texas AgriLife Research scientist collaborating with an international team.

Complex-N-glycan, a carbohydrate linked to a protein in plant cells, was previously thought to have no helpful function for plant growth and to cause certain allergies in humans, according to Dr. Hisashi Koiwa, lead author of the study in this week’s Proceedings of the National Academy of Science.

“This gene has been considered non-essential or even a nuisance,” Koiwa said. “People thought it was an allergen and couldn’t find anything good it was doing in plants. So, it was thought of as not necessary for the growth or development of a plant.”

However, the team discovered that this carbohydrate may, in fact, be responsible for a plants’ ability to contend with salt water.

The team’s finding “significantly clarifies” the role of the gene and could lead to the development of food crops and other plants capable of producing well in areas with salty water, according to the science academy’s journal reviewers.

Almost one-third of nation’s irrigated land and half of the world’s land is salt-affected, according to the U.S. Agriculture Department’s Agriculture Research Service. Salt left in the soil after the water evaporates, the research service notes, means plants don’t grow as well and, therefore, yield less.

The study used arabidopsis, a plant commonly used in labs because it grows quickly and has a relatively simple, well-known genome.

The researchers applied salt to the growing plants and then examined sick plants, or those that appeared salt sensitive.

“We had to study the diseased status of the plant to understand its health,” Koiwa said. “We looked for sick plants in the lab to find out why they were that way.”v

He said the finding may help plant breeders look for this gene as they cross plants in order to develop varieties less affected by salt.

Source: Texas A&M University

Explore further: A phospholipid pathway from plants to parasites

Related Stories

A phospholipid pathway from plants to parasites

December 29, 2017

Recent findings by researchers at Washington University in St. Louis may aid in the development of therapies to treat parasitic infections, including malaria, and may help plant scientists one day produce hardier crops. The ...

Best of Last Year—The top Phys.org articles of 2017

December 19, 2017

It was another great year for science, particularly physics, as evidenced by a study conducted by U.K., Canadian and Italian researchers who revealed substantial evidence of a holographic universe. They published what is ...

Climate change is triggering a migrant crisis in Vietnam

January 9, 2018

The Vietnamese Mekong Delta is one of Earth's most agriculturally productive regions and is of global importance for its exports of rice, shrimp, and fruit. The 18m inhabitants of this low-lying river delta are also some ...

Recommended for you

The early bits of life

January 18, 2018

How can life originate before DNA and genes? One possibility is that there are natural processes that lead to the organisation of simple physical objects such as small microcapsules that undergo rudimentary forms of interaction, ...

A new, dynamic view of chromatin movements

January 18, 2018

In cells, proteins tightly package the long thread of DNA into pearl necklace-like complexes known as chromatin. Scientists at EPFL show for the first time how chromatin moves, answering longstanding questions about how its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.