Project Helping Shape Future of 4G Wireless Communications

Mar 24, 2010
From left: Murat Torlak and graduate students Jin Yuan and Douglas Kim discuss their work.

(PhysOrg.com) -- Key elements of the next-generation of mobile technology are under development at UT Dallas, promising better Internet access, lightning-fast downloads and seamless global roaming.

A two-year project focuses on the advanced algorithms required to orchestrate the complexities of fourth-generation, or , communications. Those complexities arise in part from what’s known as MU-MIMO - multi-user, multi-input, multi-output technology - and particularly from the proliferation of antennas.

Your basic had just one antenna. But soon your cellphone and the person’s you’re calling will each have multiple antennas inside, and each cellular base station will also have multiple antennas. Optimizing the communications in such a situation is not trivial.

“In order to realize the full benefits of MU-MIMO for 4G devices, new ideas and techniques must be developed,” said Murat Torlak, an associate professor of electrical engineering in the Erik Jonsson School of Engineering and Computer Science at UT Dallas and principal investigator on the project. “In particular, effective and novel real-time algorithms with excellent complexity/performance tradeoffs must be implemented.”

Torlak’s team is one of four groups in the nation working on an effort co-funded by National Instruments that involves the implementation of real-time algorithms for software-defined radio, cognitive radio and other communications applications. The others are at the University of California, Berkeley; Virginia Tech; and UT Austin.

The UT Dallas effort will make use of the NI FlexRIO product family and the NI LabVIEW graphical programming environment. The team’s objectives include implementing algorithms to “mitigate the effects of radio-frequency impairments and multi-user interference, and to explore the benefits of polarization diversity,” a technique that combines pairs of antennas to minimize signal fade.

“UT Dallas and the other teams participating in this project have a proven history of innovation, and National Instruments is excited to sponsor the work they are doing to advance next-generation wireless technology,” said Ray Almgren, vice president of developer and academic relations for National Instruments. “By using National Instruments software and hardware, these teams now have the ideal platform for theory-based design that includes real-time prototypes.”

Explore further: Mobile Internet and SMS blocked during exams in Uzbekistan

add to favorites email to friend print save as pdf

Related Stories

NTT DoCoMo Begins Super 3G Experiment

Jul 13, 2007

NTT DoCoMo, Inc. announced today that this month it began testing an experimental Super 3G system for mobile communications. With this experiment, DoCoMo will seek to achieve a downlink transmission rate of 300Mbps over a ...

Recognition Technology to Transform Mobile Devices

Mar 11, 2010

(PhysOrg.com) -- UT Dallas researchers are working with Texas Instruments Inc. and GetFugu Inc. to enable next-generation human-device interaction (HDI) technologies that merge a physical, real-world environment ...

Can't Make it to a Meeting? Send a Computer Instead

Aug 06, 2009

(PhysOrg.com) -- If you’ve ever wished you had an assistant to attend meetings with you, take notes and produce a concise summary, then you’ll be pleased to know that UT Dallas computer scientist Yang ...

Recommended for you

Iliad founder says T-Mobile offer is 'real'

2 hours ago

French telecom upstart Iliad's founder said Friday that the company's offer for US-based T-Mobile is "real" and that he is open to working with partners on a deal.

Law changed to allow 'unlocking' cellphones

2 hours ago

President Barack Obama signed a bill into law on Friday making it legal once again to unlock a cellphone without permission from a wireless provider, so long as the service contract has expired.

User comments : 0