DNA nanotechnology breakthrough offers promising applications in medicine (w/ Video)

Mar 17, 2010

A team of McGill Chemistry Department researchers led by Dr. Hanadi Sleiman has achieved a major breakthrough in the development of nanotubes - tiny "magic bullets" that could one day deliver drugs to specific diseased cells. Sleiman explains that the research involves taking DNA out of its biological context. So rather than being used as the genetic code for life, it becomes a kind of building block for tiny nanometre-scale objects.

Using this method, the team created the first examples of DNA nanotubes that encapsulate and load cargo, and then release it rapidly and completely when a specific external is added. One of these DNA structures is only a few nanometres wide but can be extremely long, about 20,000 nanometres.

Until now, DNA nanotubes could only be constructed by rolling a two-dimensional sheet of DNA into a cylinder. Sleiman's method allows nanotubes of any shape to be formed and they can either be closed to hold materials or porous to release them. Materials such as drugs could then be released when a particular molecule is present.

This video is not supported by your browser at this time.
DNA nanotubes can carry and release cargo on demand.

One of the possible future applications for this discovery is . However, Sleiman cautions, "we are still far from being able to treat diseases using this technology; this is only a step in that direction. Researchers need to learn how to take these DNA nanostructures, such as the nanotubes here, and bring them back to biology to solve problems in nanomedicine, from , to to sensors," she said.

The team's discovery was published on March 14, 2010 in Nature Chemistry. The research was made possible with funding from the National Science and Engineering Research Council and the Canadian Institute for Advanced Research.

Explore further: A new imaging approach for monitoring cell metabolism

add to favorites email to friend print save as pdf

Related Stories

DNA 'tricked' to act as nano-building blocks

Apr 13, 2009

(PhysOrg.com) -- McGill researchers have succeeded in finding a new way to manufacture nanotubes, one of the important building blocks of the nanotechnology of the future. Their building material? Biological DNA.

Polymer Nanotubes as Molecular Probes and DNA Carriers

May 01, 2006

By growing polymers on a porous aluminum oxide template, researchers at the Seoul National University in Korea have fabricated polymer nanotubes to which they can attach two different types of molecules. These new nanoscale ...

Nanotubes Sniff Out Cancer Agents in Living Cells

Jan 16, 2009

(PhysOrg.com) -- A multidisciplinary team at the Massachusetts Institute of Technology (MIT) has developed carbon nanotubes that can be used as sensors for cancer drugs and other DNA-damaging agents inside living cells. The ...

Carbon Nanotube Network Detects DNA Without Labels

Feb 03, 2006

Using a microchip device constructed with carbon nanotubes, researchers at the University of Pittsburgh and Nanomix, Inc., in Emeryville, CA, have developed a rapid method of detecting specific DNA sequences, ...

Bio-nanotechnology to kill cancer cells

Nov 06, 2006

The University of Surrey has been awarded a grant of £420,000 to utilize nanotechnology to develop cancer treatments. The grant is part of an international project: “Multifunctional Carbon Nanotubes for Biomedical Applications ...

Recommended for you

User comments : 0