Graphene-Based Nanomat Could Lead to Next-Generation Catalysts

Jan 19, 2010 By Lisa Zyga feature
Reduced graphene oxide (RGO) can serve as a catalyst mat by anchoring particles that carry out catalysis at different sites. Image credit: Prashant V. Kamat.

(PhysOrg.com) -- Researchers have found a new use for graphene, the single-atom-thick sheet of carbon atoms that resembles chicken wire. Ever since graphene was first observed in 2004, its large surface area, excellent mechanical strength, and high electrical conductivity have intrigued scientists and opened up new areas of exploration.

In their recent study, Ian Lightcap, Thomas Kosel, and Prashant Kamat of the University of Notre Dame have demonstrated that graphene can be used as a multifunctional catalyst mat. As a catalyst mat, two-dimensional graphene can hold particles that act as catalysts to speed up or slow down the rate of chemical reactions. The findings may pave the way for the development of next-generation catalyst systems, as well as advances in chemical and biological sensors. The study is published in a recent issue of .

“The obvious challenge [in constructing a catalyst mat] is to have a large area of carbon surface so that the catalyst particles can be dispersed without any aggregation,” Kamat told PhysOrg.com. “Graphene, with its two-dimensional , provides the largest surface area to anchor catalyst particles.”

In addition to its large surface area, a graphene communicating platform also has the ability to store and transfer to different locations on the platform due to its redox properties. Taking advantage of these properties, the researchers used electron transfer processes to anchor two different catalyst particles - semiconductor nanoparticles (titanium dioxide) and metal nanoparticles (silver) - to the mat. As the researchers explain, having two different catalyst particles in different locations on the same sheet can provide greater versatility for carrying out catalytic processes.

To construct the catalyst system, photogenerated electrons in nanoparticles are first transferred into the graphene oxide substrate. Some of these electrons are used to improve the conductivity of the substrate, turning the graphene oxide into reduced graphene oxide (RGO). Meanwhile, other electrons are stored in the RGO sheet until the introduction of silver nitrate. At this point, the stored electrons are transported across the RGO sheet to reduce the silver ions into silver nanoparticles, which serve as seeds for additional growth.

“The graphene sheet facilitates direct communication between different particles by shuttling electrons across the carbon plane,” Kamat said. “The growth of silver nanoparticles confirms the ability of the graphene sheet as an electronic communicating platform between semiconductor and metal nanoparticles anchored on the graphene sheet. … One can envisage depositing other catalyst to incorporate additional selectivity.”

One example that Kamat noted is a water-splitting catalyst system, in which molecular oxygen and hydrogen are generated at separate sites.

Explore further: New type of barcode could make counterfeiters' lives more difficult

More information:
-- “Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide.” Ian V. Lightcap, Thomas H. Kosel, and Prashant V. Kamat. Nano Letters. DOI:10.1021/nl9035109

-- “Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support.” PraDOI:10.1021/jz900265je Journal of Physical Chemistry Letters. DOI:10.1021/jz900265j

4.2 /5 (13 votes)

Related Stories

A Search for Stability for Platinum Catalysts

Dec 17, 2009

(PhysOrg.com) -- A new carbon support that greatly increases the durability of proton-exchange membrane fuel cells has been developed by scientists at Pacific Northwest National Laboratory and Princeton University. ...

Light-speed nanotech: Controlling the nature of graphene

Jan 21, 2009

Researchers at Rensselaer Polytechnic Institute have discovered a new method for controlling the nature of graphene, bringing academia and industry potentially one step closer to realizing the mass production ...

Unzipping Carbon Nanotubes Can Make Graphene Ribbons

Apr 20, 2009

(PhysOrg.com) -- By "unzipping" carbon nanotubes, researchers have shown how to make flat graphene ribbons. Graphene, which is a one-atom-thick sheet of carbon that looks like chicken wire, has unique electrical ...

Recommended for you

Wiring up carbon-based electronics

1 hour ago

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

User comments : 0

More news stories

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Tiny power plants hold promise for nuclear energy

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...