How flu succeeds: Investigators identify host factors that help multiple influenza strains thrive

Dec 22, 2009

Investigators at Burnham Institute for Medical Research (Burnham), Mount Sinai School of Medicine (Mount Sinai), the Salk Institute for Biological Studies (Salk) and the Genomics Institute of the Novartis Research Foundation (GNF) have identified 295 human cell factors that influenza A strains must harness to infect a cell, including the currently circulating swine-origin H1N1. The team also identified small molecule compounds that act on several of these factors and inhibit viral replication, pointing to new ways to treat flu. These findings were published online on December 21 in the journal Nature.

Influenza A virus contains only enough genetic information (RNA) to produce 11 proteins and must co-opt host to complete its life cycle. Sumit Chanda, Ph.D., of Burnham, Megan Shaw, Ph.D., of Mount Sinai, John Young, Ph.D., of Salk, Yingyao Zhou, Ph.D., of GNF and others used RNAi screening technology to selectively turn off more than 19,000 human genes to determine which human factors facilitate viral entry, uncoating, nuclear import, and other necessary functions of the virus.

"Because influenza mutates so readily, it has become a moving target for therapeutic intervention, making it difficult to treat circulating strains, including the H1N1 ," said Dr. Chanda. "As a result, there is now widespread resistance to two classes of antiviral drugs. However, by targeting more stable human host factors, we may be able to develop therapies that prevent or treat a variety of strains and are more likely to maintain their effectiveness."

"This study has provided us with crucial knowledge of the cellular pathways and factors the influenza virus exploits to replicate" added Dr. Shaw. "Each of these represents an 'Achilles heel' of the virus and vastly increases the number of potential targets for new influenza antiviral drugs."

The team screened human A549 (lung epithelial) cells infected with a modified against the genome-wide siRNA library. Conducting two independent screens, they confirmed that selectively impairing each of 295 cellular genes reduced viral infection, effectively illuminating the path followed by influenza viruses during the infection of a cell. Importantly, they found that inhibiting proteins in known drug target classes, such as kinases, vATPases, and tubulin, impairs influenza growth, suggesting that small molecular weight compounds may be developed as host factor-directed antivirals. Protein interactions dataset analysis confirmed 181 host cellular factors that mediate 4,266 interactions between viral or cellular proteins.

Renate Koenig, Ph.D., of Burnham and Peter Palese, Ph.D., Silke Stertz, Ph.D., and Adolfo Garcia-Sastre, Ph.D., of Mount Sinai also collaborated on this research.

"Trying to identify all the host proteins that are required for the replication of viruses is a wonderful challenge and we have come closer to 'knowing' all the genes involved," said Dr. Palese.

Dr. Young added, "These findings, combined with those from other RNAi screens, provide a blueprint of the cellular processes that are exploited more generally by viruses, pointing towards development of future broad-spectrum antiviral approaches."

Explore further: NYSCF Research Institute announces largest-ever stem cell repository

add to favorites email to friend print save as pdf

Related Stories

Getting wise to the influenza virus' tricks

May 04, 2008

Influenza is currently a grave concern for governments and health organisations around the world. The worry is the potential for highly virulent bird flu strains, such as H5N1, to develop the ability to infect humans easily. ...

Evolution of influenza A virus

Dec 01, 2006

An understanding of the evolutionary dynamics of the influenza virus determines scientists' ability to survey and control the virus.

Influenza spreads readily in winter conditions

Oct 19, 2007

Low temperatures and relative humidities have been linked to the rapid spread of influenza in a new study by researchers, led by Dr. Peter Palese, from the Mount Sinai School of Medicine. The study, published in PLoS Pa ...

Recommended for you

Crowdsourced power to solve microbe mysteries

Oct 22, 2014

University of New South Wales scientists hope to unlock the secrets of millions of marine microbes from waters as far apart as Sydney's Botany Bay and the Amazon River in Brazil, with the help of an international ...

Reading a biological clock in the dark

Oct 21, 2014

Our species' waking and sleeping cycles – shaped in millions of years of evolution – have been turned upside down within a single century with the advent of electric lighting and airplanes. As a result, ...

User comments : 0