Scientists take a step towards uncovering the histone code

Dec 20, 2009

Researchers at Emory University School of Medicine have determined the structures of two enzymes that customize histones, the spool-like proteins around which DNA coils inside the cell.

The structures provide insight into how DNA's packaging is just as important and intricate as the information in the DNA itself, and how these enzymes are part of a system of inspectors making sure the packaging is in order.

The results are published online this week in the journal .

A team of scientists led by Xiaodong Cheng, PhD, professor of biochemistry at Emory and a Georgia Research Alliance eminent scholar, used X-rays to probe the architecture of two enzymes, PHF8 and KIAA1718. The enzymes are known as histone demethylases because they remove methyl groups (chemical modifications of a protein) from histones.

Mutations in the gene encoding one of the enzymes, PHF8, cause a type of inherited . Understanding how PHF8 works may help doctors better understand or even prevent mental retardation.

Many biologists believe the modifications on histones are a code, analogous to the . Depending on the histones' structure, access to DNA in the nucleus can be restricted or relatively free. The idea is: the modifications tell enzymes that act on DNA valuable information about getting to the DNA itself.

"This work represents a step toward uncovering the for how demethylases handle multiple signals on histones," says Paula Flicker, PhD, who oversees cell signaling grants at the National Institutes of Health's National Institute of General Medical Sciences. "Knowledge of how these complex signals help govern patterns of will bring us closer to understanding how determine their identity during development."

To understand histone demethylases' role in the cell, Cheng says, think of the cell as a library with thousands of books in it.

"To find a particular book in a library, you need some signs telling you how the stacks are organized," he says. "Similarly, the machinery that reads DNA needs some guidance to get to the right place."

Histones have a core that the DNA wraps around and flexible tails extending beyond the core. The cells' enzymes attach a variety of bells and whistles - methyl groups are just one -- to the histone tails to remind the cell how to handle the associated DNA.

Methyl groups mean different things depending on where they are on the histone. In addition, the modifications vary from cell to cell. In the brain, for example, the modifications on a particular gene might signal "this gene should be read frequently," and in muscle, a different set of modifications will say "keep quiet."

"What these enzymes do is make sure all the signs are consistent with each other," Cheng says. "If a sign is out of place, they remove it."

PHF8 and KIAA1718 are each made up of two attached modules. One module (called PHD) grabs a histone tail with a on it, while the other module (Jumonji) removes a methyl group from somewhere else on the tail.

Scientists previously knew the structures of the methyl-binding and methyl-removing modules in isolation. What is new is seeing how the modules are connected and how one part regulates the other, Cheng says.

Explore further: Research helps identify memory molecules

More information: Enzymatic and Structural Insights for Substrate Specificity of a family of Jumonji Histone Lysine Demethylases. J.R. Horton, A.K. Upadhyay, H.H. Qi, X. Zhang, Y. Shi and X. Cheng. Nature Struct. Mol. Bio. 17 (2009).

add to favorites email to friend print save as pdf

Related Stories

Core tenets of the 'histone code' are universal

Sep 06, 2007

In one of biology’s most impressive engineering feats, specialized proteins called histones package some six-and-a-half feet of human DNA into a nucleus that averages just five microns in diameter.

Work with fungus uncovering keys to DNA methylation

Dec 15, 2008

Researchers in a University of Oregon lab have shed more light on the mechanism that regulates DNA methylation, a fundamental biological process in which a methyl group is attached to DNA, the genetic material in cells of ...

Opening and closing the genome

Feb 22, 2007

At any given time, most of the roughly 30,000 genes that constitute the human genome are inactive, or repressed, closed to the cellular machinery that transcribes genes into the proteins of the body. In an average cell, only ...

Recommended for you

Research helps identify memory molecules

15 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

16 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

16 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

superhuman
not rated yet Dec 20, 2009
Many biologists believe the modifications on histones are a code, analogous to the genetic code

Histone modifications are not a code.

The same modification has different meaning depending on the phase of the cell cycle, the context of the DNA, the type of the cell or the host organism, there certainly is no universal code as is the case with DNA.