Invasion without a stir

Dec 17, 2009

Bacteria of the genus Salmonella cause most food-borne illnesses. The bacteria attach to cells of the intestinal wall and induce their own ingestion by cells of the intestinal epithelium. Up till now, researchers assumed that Salmonella have to induce the formation of distinctive membrane waves in order to invade these gut cells. Researchers from the Helmholtz Centre for Infection Research in Braunschweig, Germany, now refuted this common doctrine.

"Based on our data, the molecular mechanism of infection employed by has to be revised," says Klemens Rottner, head of the HZI research group "Cytoskeleton Dynamics". The group's results have now been published in the current issue of the scientific journal "Cellular Microbiology".

Salmonella are highly adaptive . They can live in the presence and absence of oxygen and thus propagate in the gut. The ingestion by humans occurs mainly via contaminated egg dishes such as mayonnaise or products as well as meat or sausages. Infections with Salmonella lead to severe diarrhea and fever, particularly in patients harbouring a compromised immune system.

Although Salmonella are long-known pathogens, the precise mechanisms of infection are incompletely understood. The bacteria inject a protein cocktail using a "molecular syringe" into host cells, leading to dramatic rearrangements of cytoskeletal filaments below the cell membrane. As a result, membrane waves are formed, which enclose the bacteria, and apparently facilitate their invasion. Those characteristic membrane waves are called "ruffles", the process is known as "ruffling". Until now, researchers regarded the formation of these ruffles as absolutely essential for bacterial entry.

In a collaborative effort, HZI research groups " dynamics" and "Signalling and Motility" now succeeded in shedding new light on the infection strategy of Salmonella. "We wanted to improve our mechanistic understanding of how Salmonella invade their host cells," says Jan Hänisch, who performed most experiments in the course of his PhD-thesis. Cells that were engineered to lack those membrane ruffles normally induced during Salmonella infection still engulfed the bacteria. "We showed for the first time that membrane ruffles are not essential for the bacteria to penetrate the host cell membrane." Since ruffling was used so far as signature of successful host cell invasion by this pathogen, the usefulness of such methods has to be reconsidered.

Finally, the researchers discovered a new piece in the puzzle of Salmonella entry, called WASH. This novel factor promotes bacterial invasion by contributing to the formation of host cell cytoskeletal filaments important for entry. "Our results have significant impact on the molecular and mechanistic understanding of the infection strategy used by this pathogen," says Rottner, "and on the development of novel strategies to screen for potential inhibitors of the entry process in the future."

Explore further: Researchers discover new strategy germs use to invade cells

More information: Molecular dissection of Salmonellen-induced membrane ruffling versus invasion. Hänisch J, Ehinger J, Ladwein M, Rohde M, Derivery E, Bosse T, Steffen A, Bumann D, Misselwitz B, Hardt WD, Gautreau A, Stradal TE, Rottner K. Cell Microbiol. (2010) 12(1), 84󈟎. doi:10.1111/j.1462-5822.2009.01380.x

add to favorites email to friend print save as pdf

Related Stories

Salmonella in garden birds responsive to antibiotics

Jun 02, 2008

Scientists at the University of Liverpool have found that Salmonella bacteria found in garden birds are sensitive to antibiotics, suggesting that the infection is unlike the bacteria found in livestock and humans.

Researchers uncover secrets of salmonella's stealth attack

Apr 16, 2009

A single crafty protein allows the deadly bacterium Salmonella enterica to both invade cells lining the intestine and hijack cellular functions to avoid destruction, Yale researchers report in the April 17 issue of the jo ...

Salmonella: Trickier than we imagined

Jun 13, 2008

Salmonella is serving up a surprise not only for tomato lovers around the country but also for scientists who study the rod-shaped bacterium that causes misery for millions of people.

Recommended for you

Researchers discover new strategy germs use to invade cells

10 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

10 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0