Highlight: Biofunctionalized magnetic-vortex microdiscs

Dec 09, 2009
Biofunctionalized magnetic-vortex microdiscs
Model of magnetic-vortex spin distribution in a disc.

Users from Argonne's Materials Science Division and University of Chicago's Pritzker School of Medicine, working collaboratively on a user science project with CNM's Nanobio Interfaces Group, have discovered that nanostructured magnetic materials offer exciting avenues for probing cell mechanics, activating mechanosensitive ion channels, and advancing potential cancer therapies.

Their new report describes an approach based on interfacing with lithographically defined microdiscs (1-micron diameter, 60 nm thick) that possess a spin-vortex ground state. When an alternating magnetic field is applied, the iron-nickel (permalloy) disc vortices shift, creating an oscillation, which transmits a mechanical force to the cell.

They show that the spin-vortex-mediated stimulus creates two dramatic effects: compromised integrity of the cellular membrane and initiation of programmed cell death. While promising results for cancer cell destruction were observed in the laboratory, animal studies and preclinical trials would be several years in the future.

Biofunctionalized magnetic-vortex microdiscs
Reflection optical microscope image of a dried suspension of the discs prepared via magnetron sputtering and optical lithography.

More information: "Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction," D.-H. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh, M. S. Lesniak,and V. Novosad, Nature Materials, November 29, 2009 (News & Views Highlight)

Nanobio Interfaces Group: nano.anl.gov/research/nano_bio.html

Provided by Argonne National Laboratory (news : web)

Explore further: From tobacco to cyberwood

Related Stories

Recommended for you

Natural nanocrystals shown to strengthen concrete

13 hours ago

Cellulose nanocrystals derived from industrial byproducts have been shown to increase the strength of concrete, representing a potential renewable additive to improve the ubiquitous construction material.

From tobacco to cyberwood

Mar 30, 2015

Swiss scientists from ETH Zurich have developed a thermometer that is at least 100 times more sensitive than previous temperature sensors. It consists of a bio-synthetic hybrid material of tobacco cells and nanotubes.

'Atomic chicken-wire' is key to faster DNA sequencing

Mar 30, 2015

An unusual and very exciting form of carbon - that can be created by drawing on paper- looks to hold the key to real-time, high throughput DNA sequencing, a technique that would revolutionise medical research ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

dontcry
not rated yet Jan 06, 2010
Very informative and trustworthy blog. Please keep updating with great posts like this one. I have booked marked your site and am about to email it to a few friends of mine that I know would enjoy reading.
Club Penguin Secrets

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.