Highlight: STM banopatterning on pristine Nb-doped SrTiO3 surfaces

Nov 04, 2009
The surface morphology of modified Nb:STO surfaces. By using different electric pulse conditions, holes of different sizes and depths are created on a ~500-nm atomic-flat terrace. The sizes of the holes are ~10 to ~20 nm.

Collaborative users from the Advanced Photon Source at the Argonne National Laboratory, working with the Electronic & Magnetic Materials & Devices Group, have found a controllable way to modify the surfaces of pristine Nb-doped SrTiO3 (Nb:STO) at the nanoscale.

For decades, most of the work on noncleavable STO focused on heavily treated surfaces (chemical etching, sputtering/annealing).

This is the first (STM) work on how the tip can interact with pristine Nb:STO surfaces created by in situ fracturing. By fracturing Nb:STO at ~50 K, ~500-nm atomically flat TiO2 terraces with a random covering of SrO molecules are attained.

Using a pulsed sample-tip bias, the SrO clusters can be removed and redeposited reversibly from surface to STM tip.

This work demonstrates the interaction between the STM tip and oxide surfaces, and it offers a pathway to creating nanoscale objects on single-crystal oxide surfaces.

More information: T. Chien, T. Santos, M. Bode, N. Guisinger, J. Freeland, Appl. Phys. Lett. 95, 163107 (2009).

Explore further: Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch

add to favorites email to friend print save as pdf

Related Stories

Molecules that suck

Nov 21, 2005

The interaction between the tip of a scanning tunnelling microscope (STM) and atoms or molecules bound to a surface can be used to construct impressive nanostructures, such as the 'quantum corral'.

Experiments Prove Existence of Atomic Chain Anchors

Feb 03, 2005

Atoms at the ends of self-assembled atomic chains act like anchors with lower energy levels than the “links” in the chain, according to new measurements by physicists at the National Institute of Standards ...

Scientists Manipulate Atoms on a Rough 3-D Surface

Jan 25, 2007

Ohio University nanoscientists have used a scanning tunneling microscope (STM) to manipulate individual atoms on a rough terrain. It is the first atom manipulation of its kind done on a three-dimensional surface.

Researchers control chemical reactions one molecule at a time

Dec 14, 2004

Scientists at the University of California, Riverside showed that L. P. Hammett’s 1937 prediction of the strength of different acids is directly transferable to the activation of individual molecules on metal surfaces using ...

Recommended for you

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

User comments : 0