Highlight: Nanoscale piezoresponse of ferroelectric domains

October 20, 2009,
Nanoscale piezoresponse of ferroelectric domains

The first fundamental studies of the dependence of ferroelectric domain configuration and switching behavior on the shape of epitaxial BiFeO3 (BFO) nanostructures has been reported by users from Northwestern University, Korea Advanced Institute of Science & Technology, and Argonne’s Materials Science Division working collaboratively with CNM’s Nanofabrication & Devices Group.

The nanostructures were produced by growing BFO films on SrRuO3 (SRO) (001) oriented electrode layers on single-crystal SrTiO3 (STO) (100) substrates. Shapes were fabricated using rf-magnetron sputtering deposition followed by focused ion-beam lithography.

Domain configuration was investigated using piezoelectric force microscopy, revealing that the square-shaped nanostructures have a single variant domain configuration, whereas the round-shaped nanostructures exhibit seven variants of domain configuration.

The results have implications for the development of nanocapacitors for gigabyte to terabyte nonvolatile ferroelectric memories.

More information: S. Hong, J. Klug, M. Park,A. Imre, M. Bedzyk, K. No, A. Petford-Long, and O. Auciello, J. Appl. Phys., 105, 061619 2009

Provided by Argonne National Laboratory (news : web)

Explore further: Coupling of Single Quantum Dots to Smooth Metal Films

Related Stories

Coupling of Single Quantum Dots to Smooth Metal Films

July 20, 2009

Scientists at Argonne National Laboratory's CNM Nanophotonics Group have measured how light emission from individual colloidal semiconductor nanocrystals, or quantum dots, is modified when in proximity to smooth metal films. ...

Reverse Chemical Switching of a Ferroelectric Film

February 25, 2009

(PhysOrg.com) -- Ferroelectric materials display a spontaneous electric polarization below the Curie temperature that can be reoriented, typically by applying an electric field. In this study, researchers from Argonne, Northern ...

Shimmering ferroelectric domains

July 18, 2008

Ferroelectric materials are named after ferromagnetic ones because they behave in a similar way. The main difference: these materials are not magnetic, but permanently electrically polarized. They have great importance for ...

New Gas Sensor Based on Multiwalled Carbon Nanotubes

May 27, 2009

Argonne Center for Nanoscale Materials staff in the Nanofabrication & Devices Group together with collaborative users from the University of Wisconsin-Milwaukee have fabricated a miniaturized gas sensor using hybrid nanostructures ...

Recommended for you

New technology for diagnosing immunity to Ebola

January 15, 2018

A promising new approach to detect immunity to Ebola virus infection has been developed by researchers from i-sense in a collaboration between UCL and Imperial College London.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.