Molecules that suck

The interaction between the tip of a scanning tunnelling microscope (STM) and atoms or molecules bound to a surface can be used to construct impressive nanostructures, such as the 'quantum corral'.

As reported in the December issue of Nature Materials (DOI: 10.1038/nmat1529), researchers combine STM manipulation techniques with the ability of a molecule to assemble nanostructures by sucking up and depositing atoms where needed.

The invention of the STM in the early 1980s was the catalyst of the nanoscale technological revolution, not only for imaging but also for interacting with matter at the atomic scale. Since then, progress in manipulation techniques has shown that the interaction of molecules with the surface of a metal can induce surface reconstruction. Francesca Moresco and colleagues now go a step further by moving and organizing metal atoms on a substrate with the help of a well-designed six-leg organic molecule.

The copper atoms trapped under the organic molecule can be further rearranged by bringing the whole system and its copper load to a specific position on the surface where the metal atoms can subsequently be released.

The authors believe that this versatile assembling approach should facilitate the interconnection of molecular devices to well-defined atomic-scale metallic electrodes on insulating surfaces, where STM has so far proved unsuccessful.

Source: Nature


Explore further

This exotic particle had an out-of-body experience; these scientists took a picture of it

Citation: Molecules that suck (2005, November 21) retrieved 21 October 2021 from https://phys.org/news/2005-11-molecules.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors