New discoveries in the yeast Saccharomyces cerevisiae

Nov 04, 2009

Researchers at UAB in collaboration with the University of Stellenbosch, South Africa, have discovered the structure of the PPC descarboxilase (PPCDC) enzyme present in the yeast Saccharomyces cerevisiae, a very important organism in biotechnology and an excellent model for biological research. Scientists have verified that its structure differs substantially from that found in humans, which in addition to its characteristic as an essential enzyme makes it a potential therapeutic target.

The study, entitled "Moonlighting Proteins HAL3 and VHS3 Form a Heteromeric PPCDC with YKL088w in Yeast CoA Biosynthesis" and published in Nature Chemical Biology, was carried out by researchers of the UAB Department of and and the University of Stellenbosch, South Africa, under the coordination of Dr Joaquin Ariño.

PPCDC is an essential and plays a key role in the synthesis of Coenzyme A, a molecule universally conserved in eukaryotic cells which intervenes in the degradation of fatty acids, carbohydrates and amino acids in all organisms (bacteria, plants and humans). The gene involved in the formation of PPCDC was identified in plants and humans. In both cases, the enzyme is a homotrimeric complex, i.e. it is formed by the association of three identical proteins. The interaction of the three is precisely what determines the formation of the three identical active sites- areas of the enzyme in which the catalytic process takes place - it contains. However, its nature in the was a mystery to researchers, given that this organism seems to contain three genes potentially capable of coding a PPCDC (HAL3, VHS3 and YKL088w), but none of them could be associated with this function.

The research carried out by the UAB group has helped to clarify this apparent paradox by demonstrating that the S. cerevisiae enzyme exists as a heterotrimer, i.e. it is formed by 3 non-identical proteins. One of these proteins is necessarily coded by the YKL088w gene (which explains its essential nature) and the other can be two molecules coded by either HAL3 or VHS3, or even one of each. The active site in this case is made up of of two different proteins: the one coded by gene YKL088w, which provides a catalytic cysteine, and the one coded by HAL3 or VHS3, which provides a histidine, also essential for the catalysis.

This discovery is even more surprising if one takes into account that in recent years the UAB group has discovered that the genes HAL3 and VHS3 function in a completely different manner in Saccharomyces cerevisiae by regulating the activity of a phosphatase involved in the saline tolerance and in the cell cycle. Therefore, the proteins coded by HAL3 and VHS3 are examples of "moonlighting" proteins, that is, they are capable of carrying out completely different functions (at least apparently) in the cell.

The research carried out by Dr Ariño's group in collaboration with the University of Stellenbosch demonstrates that the heterotrimeric structure of the PPCDC can exist in a wide group of yeasts from the Ascomycetes division. This group not only includes yeasts which can be used in biotechnology and industries, such as S. cerevisiae and Pichia pastoris, but also potential pathogens such as Candida albicans. The difference between the PPCDC structure in these organisms and that of the human enzyme, together with its characteristic as an essential enzyme, makes it a possible target for antifungal therapy.

Source: Universitat Autonoma de Barcelona

Explore further: Selenium compounds boost immune system to fight against cancer

add to favorites email to friend print save as pdf

Related Stories

Research breakthrough for the protein factories of tomorrow

Sep 22, 2006

Using a kind of molecular ‘hip joint operation,’ researchers at Uppsala University have succeeded in replacing a natural amino acid in a protein with an artificial one. This step forward opens the possibility of creating ...

Hepatitis C virus enzyme sites revealed

Jul 24, 2006

U.S. researchers say the crystal structure of one of the hepatitis C viral proteins might offer new opportunities for antiviral drug design.

RNA interference found in budding yeasts

Sep 11, 2009

Some budding yeast species have the ability to silence genes using RNA interference (RNAi). Until now, most researchers thought that no budding yeasts possess the RNAi pathway because Saccharomyces cerevisiae, the protoypical ...

Evolution with a restricted number of genes

Dec 14, 2007

The development of higher forms of life would appear to have been influenced by RNA polymerase II. This enzyme transcribes the information coded by genes from DNA into messenger-RNA (mRNA), which in turn is the basis for ...

Researchers find fat gene

Mar 20, 2006

Rutgers researchers have identified a gene – and the molecular function of its protein product – that provides an important clue to further understanding obesity and may point the way to new drugs to control fat metabolism.

Recommended for you

Molecules that came in handy for first life on Earth

Nov 24, 2014

For the first time, chemists have successfully produced amino acid-like molecules that all have the same 'handedness', from simple building blocks and in a single test tube. Could this be how life started. ...

Jumping hurdles in the RNA world

Nov 21, 2014

Astrobiologists have shown that the formation of RNA from prebiotic reactions may not be as problematic as scientists once thought.

New computer model sets new precedent in drug discovery

Nov 18, 2014

A major challenge faced by the pharmaceutical industry has been how to rationally design and select protein molecules to create effective biologic drug therapies while reducing unintended side effects - a challenge that has ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.