Unraveling the mechanisms behind organ regeneration in zebrafish

Nov 02, 2009
Unlike humans, zebrafish are able to regenerate amputated appendages. Credit: Courtesy of the Salk Institute

The search for the holy grail of regenerative medicine -- the ability to "grow back" a perfect body part when one is lost to injury or disease -- has been under way for years, yet the steps involved in this seemingly magic process are still poorly understood.

Now researchers at the Salk Institute for Biological Studies have identified an essential cellular pathway in that paves the way for limb regeneration by unlocking patterns last seen during embryonic development. They found that a process known as histone demethylation switches cells at the site from an inactive to an active state, which turns on the genes required to build a copy of the lost limb.

"This is the first real molecular insight into what is happening during limb regeneration," says first author Scott Stewart, Ph.D., a postdoctoral researcher in the lab of Juan Carlos Izpisúa Belmonte, Ph.D., who led the Salk team. "Until now, how amputation is translated into gene activation has been like magic. Finally we have a handle on a process we can actually follow."

Their findings, which will be published in a forthcoming issue of Proceedings of the National Academy of Sciences, U.S.A., help to explain how epimorphic regeneration—the regrowing of morphologically and functionally perfect copies of amputated limbs—is controlled, an important step toward understanding why certain animals can do it and we cannot.

"Our experiments show that normal development and limb regeneration are controlled by similar mechanisms," explains Izpisúa Belmonte, a professor in the Gene Expression Laboratory. "This finding will help us to ask more specific questions about mammalian limb regeneration: Are the same genes involved when we amputate a mammalian limb? If not, what would happen if we turned them on? And if we can affect these methylation marks in an amputated limb, what effect would that have?"

The Belmonte lab uses zebrafish, a small fish from the minnow family, to study limb regeneration. "If you amputate the tail of the zebrafish, it regenerates in about a week, seemingly with no effort and leaving no scar," explains Stewart. "What's more, it regenerates a perfect copy and—like growing grass—it will do this over and over again."

Since regeneration recapitulates in broad strokes , during which a complex multi-cellular organism develops from a handful of embryonic stem cells, the researchers began by comparing gene expression patterns between the two processes. During development, genes within specific cell types are turned on and off to trigger the necessary expression patterns that create a whole animal. Once their job is done, they lie silently till they are turned on once again following amputation.

Top: Treating the amputation site with demethylase-inhibitors blocks regeneration. Bottom: The fully regrown tail fin seven days after amputation without treatment. Credit: Courtesy of Dr. Scott Stewart, Salk Institute for Biological Studies

Based on these similarities, Stewart reasoned that genes involved in regeneration may share silencing mechanisms with the ones active in embryonic stem cells. Embryonic stem cells are maintained in a ready-to-go state, "poised" for action to become whatever cell type is needed. The key to this "poised" state are histones, DNA packaging proteins that are also used as carriers for chemical modifications, such as methylation and acetylation. These chemical marks serve as "on" and "off" switches for specific genes.

Stewart discovered that the histone modifications that poise embryonic stem cell-specific genes for activation are also found on the histones near genes involved in regeneration, putting them into a ready-to-go state. "This suggests that two different gene expression programs may exist; one for normal cellular activity and one for regeneration," explains Stewart. To test this hypothesis, the team looked at the histone marks during regeneration. As suspected, they saw a reduction in "off" switches and an increase in "on" switches in regenerating tissue, tipping the balance toward gene expression.

Delving deeper, the researchers found that enzymes that remove the "off" mark, so-called demethylases, are present in high levels in regenerating tissue. One enzyme in particular, called Kdm6b.1, is found exclusively in that are undergoing the regeneration process. Without Kdm6b.1, zebrafish failed to regenerate amputated fins, meaning removal of the "off" mark is a prerequisite for fin regeneration.

In the long term, the Salk researchers hope that these findings will help them understand whether we can affect the outcome of mammalian limb regeneration. In the more immediate future, the team plans to use global approaches to identify all the targets of Kdm6b.1 during regeneration, and to find out what gives the signal to turn these genes off when regeneration is complete.

Source: Salk Institute (news : web)

Explore further: Life's extremists may be an untapped source of antibacterial drugs

add to favorites email to friend print save as pdf

Related Stories

Forsyth scientists discover early key to regeneration

Dec 13, 2006

Science may be one step closer to understanding how a limb can be grown or a spinal cord can be repaired. Scientists at The Forsyth Institute have discovered that some cells have to die for regeneration to occur. This research ...

Liver regeneration may be simpler than previously thought

Apr 11, 2007

The way the liver renews itself may be simpler than what scientists had been assuming. A new study, appearing in the April 13 issue of The Journal of Biological Chemistry, provides new information on the inner workings of cel ...

MicroRNAs help zebrafish regenerate fins

Mar 14, 2008

Biologists have discovered a molecular circuit breaker that controls a zebrafish's remarkable ability to regrow missing fins, according to a new study from Duke University Medical Center.

Newts which Regrow their Hearts

Dec 05, 2006

When a newt loses a limb, the limb regrows. What is more, a newt can also completely repair damage to its heart. Scientists at the Max Planck Institute for Heart and Lung Research in Bad Nauheim have now started ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
5 / 5 (1) Nov 02, 2009
This is excellent work but will be difficult to exploit until the mechanisms which coordinate the development of spatially segregated stem cells (such as around the circumference of a stump of an arm) are fully understood

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.