Bacteria 'launch a shield' to resist attack

Nov 02, 2009

Bacteria that cause chronic lung infections can communicate with each other to form a deadly shield against the body's natural defenses. Studying these interactions could lead to new ways of treating bacteria that are resistant to antibiotics, according to an article in the November issue of Microbiology.

Researchers from the University of Copenhagen and the Technical University of Denmark along with other collaborators in Denmark and the US found that the bacterium Pseudomonas aeruginosa can 'switch on' production of molecules that kill - preventing the bacteria being eliminated by the body's immune system.

P. aeruginosa is responsible for many hospital-acquired infections and also causes chronic infections in those with pre-existing medical conditions such as (CF). The bacteria cause persistent lung infections by clumping together to form a biofilm, which spreads over the lungs like a slime. Such biofilms are generally resistant to antibiotics as well as the host immune response.

The study showed that P. aeruginosa uses a well-studied communication system called quorum sensing (QS) to detect approaching white blood cells and warn other bacteria in the biofilm. In response to this signal, the bacteria increase their production of molecules called rhamnolipids. These molecules sit on the biofilm surface to form a shield that destroys any white blood cells that encounter it. Interrupting quorum sensing to halt the "launch a shield" response could be a way of treating these bacteria that can resist antibiotics as well as the host immune system.

Professor Michael Givskov from the University of Copenhagen who led the study believes there are significant clinical benefits to this research. "The ultimate goal [of this research] is to eradicate the present day's that are involved in the bulk of chronic infections," he says. "Antibiotic resistance is one of the most serious emerging health problems in the world today. More than 70% of the disease-causing are resistant to at least one of the currently available antibiotics. Studying interactions between P. aeruginosa and the innate and adaptive immune response will provide valuable information for the design of novel antimicrobials".

Source: Society for General Microbiology

Explore further: Microbes provide insights into evolution of human language

add to favorites email to friend print save as pdf

Related Stories

No hiding place for infecting bacteria

Mar 16, 2009

Scientists in Colorado have discovered a new approach to prevent bacterial infections from taking hold. Writing in the Journal of Medical Microbiology, Dr Quinn Parks and colleagues describe how they used enzymes against produc ...

The bacteria can cheat on their mates

Nov 15, 2007

Pursuing our own short term interests by cheating on the rest of the population is not the preserve of the human race. It seems bacteria can operate in just the same way.

Protein opens hope of treatment for cystic fibrosis patients

Sep 11, 2008

Scientists have finally identified a direct role for the missing protein that leaves cystic fibrosis patients open to attack from lung-damaging bacteria, the main reason most of them die before their 35th birthday, scientists ...

Trojan horse strategy defeats drug-resistant bacteria

Mar 16, 2007

A new antimicrobial approach can kill bacteria in laboratory experiments and eliminate life-threatening infections in mice by interfering with a key bacterial nutrient, according to research led by a University of Washington ...

Recommended for you

Ocean microbes display remarkable genetic diversity

2 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

4 hours ago

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Cell division speed influences gene architecture

Apr 23, 2014

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Study links California drought to global warming

While researchers have sometimes connected weather extremes to man-made global warming, usually it is not done in real time. Now a study is asserting a link between climate change and both the intensifying California drought ...

Autism Genome Project delivers genetic discovery

A new study from investigators with the Autism Genome Project, the world's largest research project on identifying genes associated with risk for autism, has found that the comprehensive use of copy number variant (CNV) genetic ...