SEMATECH Reports New Approach to Simulate Transistor Noise

Oct 27, 2009

Researchers from SEMATECH's Front End Processes (FEP) program have developed a comprehensive transistor noise model capable of extracting defect characteristics from low frequency noise data in advanced gate stack transistors using both conventional and novel dielectrics. The proposed model is a key step towards identifying and minimizing defects to support aggressive device scaling. SEMATECH’s results were presented at the IEEE Integrated Reliability Workshop (IRW) on Thursday, October 22, in Lake Tahoe, CA.

Low frequency noise — random fluctuations in device current — is a growing concern in the performance of integrated CMOS circuits, particularly as the industry continues relentless device scaling and new materials are introduced. The root of the “noise” is electrons jumping from the substrate up into a defect in the dielectric and back.

The conventional model for low frequency noise, which was acceptable up to recent technology nodes, does not work well now, as pointed out by NIST researchers earlier this year (IEEE Spectrum Aug 2009 Vol 46, pg 16) - the model prediction for carrier capture rates is off by 1000x or more. To address this issue, SEMATECH’s FEP researchers have employed the concept of 'lattice relaxation' around a defect; when the defect traps a charge (electron), the neighboring nuclei “feel” its Coulomb potential and shift their position slightly to accommodate this additional force &ndash that is, they ‘relax’ around the defect. This relaxation requires a finite amount of energy, amounting to a barrier which slows down the rate of capture.

The use of noise characterization is of particular interest to the reliability community, where it has become a valuable diagnostic technique in the development of semiconductor materials and devices. “To optimize noise performance in various applications, we need to be able to accurately simulate the processes responsible for noise,” said Gennadi Bersuker, project manager of electrical characterization and reliability at SEMATECH. “With the proposed model, the reliability community now has a means of identifying the atomic structure of the defects, allowing feedback to process and integration groups to facilitate reduction and elimination of the defects.”

Michael Shur, the Patricia W. and C. Sheldon Professor of Solid State Electronics at Rensselaer Polytechnic Institute, said that the mechanism of structural relaxation of the traps in MOSFETs discovered by the SEMATECH group is the key to understanding and minimizing noise and, hence, is of extreme importance for scaling advanced device structures. “The SEMATECH work explains several orders of magnitude difference between older, so-called, tunneling models and the noise measured in advanced CMOS with ultrathin oxide layers,” said Prof. Shur.

Source: SEMATECH

Explore further: X-ray detector on plastic delivers medical imaging performance

add to favorites email to friend print save as pdf

Related Stories

Engineers Identify Materials for nMOS Metal Gate Electrodes

Mar 30, 2006

Sematech engineers have identified metal electrode materials that can be used to build reliable nMOS transistors with high‑k dielectric – a major milestone in the quest to fabricate working CMOS devices using metal ...

SEMATECH Achieves Single Digit EUV Mask Blank Defect Goal

Feb 11, 2008

Technologists at SEMATECH have successfully demonstrated world-class results in low defect density for mask blanks used in extreme ultraviolet lithography (EUVL)—pushing the technology another significant step toward readiness ...

Recommended for you

Quantenna promises 10-gigabit Wi-Fi by next year

2 hours ago

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

New US-Spanish firm says targets rich mobile ad market

3 hours ago

Spanish telecoms firm Telefonica and US investment giant Blackstone launched a mobile telephone advertising venture on Wednesday, challenging internet giants such as Google and Facebook in a multi-billion-dollar ...

Environmentally compatible organic solar cells

3 hours ago

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

Twitter rules out Turkey office amid tax row

3 hours ago

Social networking company Twitter on Wednesday rejected demands from the Turkish government to open an office there, following accusations of tax evasion and a two-week ban on the service.

User comments : 0

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

New US-Spanish firm says targets rich mobile ad market

Spanish telecoms firm Telefonica and US investment giant Blackstone launched a mobile telephone advertising venture on Wednesday, challenging internet giants such as Google and Facebook in a multi-billion-dollar ...

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...