Powerhouses in the cell dismantled

Oct 15, 2009

All of life is founded on the interactions of millions of proteins. These are the building blocks for cells and form the molecular mechanisms of life. The problem is that proteins are extremely difficult to study, particularly because there are so many of them and they appear in all sizes and weights.

Now, Kris Gevaert from VIB/Ghent University (Belgium) and colleagues from the universities of Freiburg and Bochum have achieved a breakthrough in protein research. Using yeast, they have succeeded in making virtually the complete inventory of all the proteins in the mitochondria, the energy producers found in every cell. Their research findings are being published in Cell.

During their research, the scientists encountered the Icp55 enzyme, which fulfills an important role in the stabilization of the proteins in the mitochondria. Until now, it was unclear just how the cell accomplished this. Icp55 turns out to be a molecular pair of scissors that snips off one of the ends of certain proteins, so that these proteins are transformed from an unstable to a stable form.

"This is a crucial step for fundamental research on proteins, the of life," says Kris Gevaert, VIB researcher at Ghent University. "It's the first time that such a precise protein determination of the mitochondria has been achieved. Our breakthrough was made possible by COFRADIC, a technology that enables us to analyze protein mixtures much more sensitively and accurately."

"We're now able to detect protein forms that were simply overlooked before," Kris Gevaert continues. "So we're receiving requests for scientific collaborations from all over the world."

COFRADIC is a technology developed by VIB/Ghent University researchers Joël Vandekerckhove and Kris Gevaert. With COFRADIC, the traditional conception of protein identification has been turned upside-down. Instead of first separating the intact proteins, the entire protein mixture is cut into small pieces () − which are more soluble and much easier to separate in order to conduct further analyses. Applying this approach to the samples provided by the German scientists revealed a new protein (Icp55) − which proved to be key in explaining stabilization in , a mystery that has been unsolved up to now.

Source: Flanders Institute for Biotechnology

Explore further: Micro fingers for arranging single cells

Related Stories

Scientists unveil mechanism for 'up and down' in plants

Oct 28, 2008

VIB researchers at Ghent University, Belgium, discovered how the transport of an important plant hormone is organized in a way that the plant knows in which direction its roots and leaves have to grow. They discovered how ...

Yale scientists map cell signaling network

Nov 30, 2005

Yale University scientists have mapped, for the first time, the proteins and kinase signaling network that control how cells of higher organisms operate.

Research breakthrough for the protein factories of tomorrow

Sep 22, 2006

Using a kind of molecular ‘hip joint operation,’ researchers at Uppsala University have succeeded in replacing a natural amino acid in a protein with an artificial one. This step forward opens the possibility of creating ...

Recommended for you

Micro fingers for arranging single cells

19 hours ago

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Detailed structure of human ribosome revealed

21 hours ago

A team at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC - CNRS/Université de Strasbourg/Inserm) has evidenced, at the atomic scale, the three-dimensional structure of the complete ...

How to kill a protein

21 hours ago

For decades scientists have been looking closely at how our cells make proteins. But the inverse is equally important: how cells kill them.

How RNA machinery navigates our genomic obstacle course

21 hours ago

Once upon a time, scientists thought RNA polymerase—the molecule that kicks off protein synthesis by transcribing DNA into RNA—worked like a wind-up toy: Set it down at a start site in our DNA and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.