New study resolves the mysterious origin of Merkel cells

Sep 28, 2009
Merkel cells (red) fail to differentiate from epidermal stem cells in mouse skin lacking Atoh1 (right). The study appears in the October 5, 2009, issue of the Journal of Cell Biology. Credit: Van Keymeulen, A., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200907080.

A new study resolves a 130-year-old mystery over the developmental origin of specialized skin cells involved in touch sensation. The findings will appear in the October 5, 2009 issue of the Journal of Cell Biology.

First described in 1875, Merkel are neuroendocrine cells that reside in the vertebrate epidermis, passing mechanical stimuli on to sensory neurons. In mice, they are mainly found in the paws and around the whiskers but, because they express proteins characteristic of both epithelial and neuronal cells, scientists have long debated whether Merkel cells develop from the epidermis or neural crest.

Van Keymeulen et al. traced the lineage of Merkel cells by fluorescently labeling cells derived from either epidermal or neural crest . This revealed that Merkel cells originally emerge from the embryonic epidermis. In addition, epidermal stem cells in adult mouse replenish the Merkel cell population as they slowly die off over time. The researchers also found that a transcription factor called Atoh1 is required for epidermal progenitors to differentiate into Merkel cells--mice lacking Atoh1 in their skin failed to develop any of the mechanotransducing cells.

Atoh1 acts as a tumor suppressor to prevent an aggressive skin cancer called Merkel cell , says senior author Cédric Blanpain. His team now wants to investigate the precise function of the transcription factor in Merkel cell differentiation, as well as the signaling pathways that regulate the process.

More information: Van Keymeulen, A., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200907080

Source: Rockefeller University (news : web)

Explore further: Bulletproof nuclei? Stem cells exhibit unusual absorption property

add to favorites email to friend print save as pdf

Related Stories

Suppressing cancer with a master control gene

Feb 23, 2009

Starting with the tiny fruit fly and then moving into mice and humans, researchers at VIB and K. U. Leuven show that expression of the same gene suppresses cancer in all three organisms. Reciprocally, switching off the gene ...

Epigenetic mark guides stem cells toward their destiny

Mar 19, 2009

(PhysOrg.com) -- Not all stem cells are completely blank slates. Some, known as adult stem cells, have already partially embraced their fates and are capable of becoming only cells of a particular type of ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.