Therapeutic nanoparticles give new meaning to sugar-coating medicine

Sep 22, 2009
An iron-centered nanoparticle (left) analyzed at NIST’s Center for Neutron Research has a coating of the sugar dextran, whose tendrils prevent groups of the particles from clumping. When tumor cells ingest them (right), the particles still congregate closely enough to share heat when stimulated by a magnetic field, killing the cells. White arrow indicates a red blood cell. Credit: (l.) J. Aarons; (r.) A. Guistini, R. Strawbridge and P. Hoopes, Dartmouth College

(PhysOrg.com) -- A research team at the National Institute of Standards and Technology studying sugar-coated nanoparticles for use as a possible cancer therapy has uncovered a delicate balancing act that makes the particles more effective than conventional thinking says they should be. Just like individuals in a crowd respecting other people's personal space, the particles work because they get close together, but not too close.

In cooperation with colleagues at The Johns Hopkins University, Dartmouth College, the University of Manitoba and two biopharmaceutical companies, the NIST team has demonstrated that the particles -- essentially sugar-coated bits of iron oxide, about 100 nanometers wide—are potent killers because they interact with one another in ways that smaller do not. The interactions, thought by many bioengineers to be undesirable, actually help the larger particles heat up better when subjected to an alternating . Because this heat destroys , the team's findings may help engineers design better particles and treatment methods.

Nanoparticles hold the promise of battling cancer without the damaging side effects of chemotherapy or . Minuscule balls of iron oxide can be coated with sugar molecules making them particularly attractive to resource-hungry cancer cells. Once the particles are injected, cancer cells would then ingest them, and doctors would then be able to apply an alternating magnetic field that causes the iron oxide centers to heat, killing the cancer but leaving surrounding tissue unharmed.

Two biotech companies, Micromod Partikeltechnologie and Aduro BioTech, created particles that showed great potential in treating cancers in mice, and they asked NIST to help understand why it worked so well. "But they sent us particles that were much larger than what the conventional wisdom says they should be," says NIST materials scientist Cindi Dennis. "Larger particles are more strongly magnetic and tend to clump together, which makes them large enough to attract the body's defense systems before they can reach a tumor. The companies' nanoparticles, however, did not have this problem."

Neutron scattering probes at the NIST Center for Neutron Research revealed that the particles' larger iron oxide cores attract one another, but that the sugar coating has fibers extending out, making it resemble a dandelion—and these fibers push against one another when two particles get too close together, making them spring apart and maintain an antibody-defying distance rather than clumping. Moreover, when the particles do get close, the centers all rotate together under the influence of a , both generating more heat and depositing this heat locally. All these factors helped the nanoparticles destroy breast tumors in three out of four mice after one treatment with no regrowth.

"The push-pull is part of a tug of war that fixes the distance between nanoparticles," Dennis says. "This suggests we can stabilize interacting particles in ways that potentially pay off in the clinic."

More information: C.L. Dennis, A.J. Jackson, J.A. Borchers, P.J. Hoopes, R. Strawbridge, A.R. Foreman, J. van Lierop, C. Gruttner and R. Ivkov. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology, 20 (2009) 395103. doi:10.1088/0957-4484/20/39/395103

Source: National Institute of Standards and Technology (news : web)

Explore further: Synthetic virus developed to deliver a new generation of medicines

add to favorites email to friend print save as pdf

Related Stories

Labeling Cells with Magnetic Nanoparticles

Feb 20, 2007

Investigators at the German Cancer Research Center have developed silica-coated iron oxide nanoparticles that allow for cell tracking in a live animal using magnetic resonance imaging (MRI). More sensitive methods for tracking ...

New Nanoparticle Structure Boosts Magnetic Properties

Dec 19, 2005

Magnetic nanoparticles have shown promise as contrast-enhancing agents for improving cancer detection using magnetic resonance imaging (MRI), as miniaturized heaters capable of killing malignant cells, and as targeted drug ...

Making Better Magnetic Nanoparticles

Dec 18, 2006

Using a polymer coating designed to resemble the outer surface of a cell membrane, a team of investigators led by Steve Armes, Ph.D., of the University of Sheffield in the United Kingdom, has created a highly stable, biocompatible ...

Researcher Looks For Better Way to Kill Cancer Cells

Oct 13, 2008

Physics Professor Diandra Leslie-Pelecky brought more with her when she arrived at UT Dallas than expertise in nanotechnology and shiny behemoth lab equipment. She brought an award for $84,000 from the National ...

Magnetic nanoparticles assembled into long chains

Oct 20, 2005

Chains of 1 million magnetic nanoparticles have been assembled and disassembled in a solution of suspended particles in a controlled way, scientists at the National Institute of Standards and Technology (NIST) ...

Recommended for you

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Tissue regeneration using anti-inflammatory nanomolecules

Aug 22, 2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

User comments : 0