Labeling Cells with Magnetic Nanoparticles

February 20, 2007

Investigators at the German Cancer Research Center have developed silica-coated iron oxide nanoparticles that allow for cell tracking in a live animal using magnetic resonance imaging (MRI). More sensitive methods for tracking cells in vivo could lead to a better understanding of how cancer spreads throughout the body or how the immune system reacts to tumors.

Fabian Kiessling, Ph.D., led this study, whose initial stages involved preparing iron oxide nanoparticles and coating them with an ultrathin layer of various silicon-containing chemicals.

During this part of their study, the investigators determined that the nature of this coating had a profound impact on the magnetic properties of the resulting nanoparticle. Only those coated with silicon dioxide retained the optimal magnetic properties needed to generate the strongest MRI signal per particle.

Next, the researchers determined that cells will take up these silicon dioxide-coated iron oxide particles in sufficient quantities to produce an observable MRI signal. One interesting result from these experiments was that cells appear to use a different mechanism to take up these small nanoparticles than they do to take up the larger dextran-coated iron oxide particles now being used in clinical MRI studies.

This work is detailed in a paper titled, “Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: a promising tool to label cells for magnetic resonance imaging.” Investigators from Merck and the University of Munich also participated in this study. An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Researchers identify genes that help trout find their way home

Related Stories

Artificial photosynthesis steps into the light

March 23, 2017

Rice University scientists have created an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for solar water splitting, the conversion of solar energy to chemical energy in the ...

A radical rethink is needed to understand the brain

March 16, 2017

Understanding the human brain is arguably the greatest challenge of modern science. The leading approach for most of the past 200 years has been to link its functions to different brain regions or even individual neurons ...

Recommended for you

Water is surprisingly ordered on the nanoscale

May 24, 2017

Researchers from AMOLF and Swiss EPFL have shown that the surface of minuscule water drops surrounded by a hydrophobic substance such as oil is surprisingly ordered. At room temperature, the surface water molecules of these ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.