IMEC unveils promising mechanically-stacked GaAs/Ge multijunction solar cell

Sep 22, 2009
IMEC's mechanically stacked GaAs/Ge cell

At the European Photovoltaic Solar Energy Conference (Hamburg, Germany), IMEC presents a mechanically-stacked GaAs/Ge multijunction solar cell. This is the first promising demonstrator of IMEC’s novel technology to produce mechanically stacked, high-efficiency multijunction solar cells, aiming at efficiencies above 40%.

At the top of the stack is a one-side contacted GaAs top cell that is only 4µm thick and that is transparent for . Its efficiency is 23.4%, which is close to the efficiency of standard GaAs cells. has succeeded in transferring this GaAs top cell onto a Ge bottom cell, creating a mechanical stack. In that stack, the Ge bottom cell is separately contacted. It has a potential efficiency of 3-3.5%, which is higher than Ge bottom cells in state-of-the-art monolithically stacked InGaP/(In)GaAs/Ge cells. Looking forward, Giovanni Flamand, team manager at IMEC, expects to show a first working triple-junction cell beginning of 2010.

This cell is a demonstrator of IMEC’s innovative technology to produce mechanically stacked, high-efficiency InGaP/GaAs/Ge triple-junction solar cells. This includes manufacturing world-class thin-film III-V cells and Ge bottom cells, and developing a technology to mechanically stack them. The expected conversion efficiencies are 1-2% higher than those obtained today with monolithic triple-junction solar cells (> 40% with concentrated illumination). In addition, the new cells show an enhanced spectral robustness. Stacked solar cells combine cells made from different materials to capture and converse a larger part of the light spectrum than is possible with a single material.

Dr. Jef Poortmans, IMEC’s Photovoltaics Program Director: “Mechanical stacks are more complex to handle and interconnect. But they definitely offer a way to increase the conversion efficiency and energy yield of high-efficiency . And they also enable an efficient way to try and use new combinations of materials. For this technology, we profit from IMEC’s expertise in 3D stacking, growing III-V layers, and solar cell processing.”

Source: IMEC

Explore further: A bump circuit with flexible tuning ability that uses 500 times less power

add to favorites email to friend print save as pdf

Related Stories

NREL Solar Cell Sets World Efficiency Record at 40.8 Percent

Aug 13, 2008

(PhysOrg.com) -- Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have set a world record in solar cell efficiency with a photovoltaic device that converts 40.8 percent of the light ...

Solar Cells with 60% Efficiency?

Jan 09, 2008

Nuclear Engineer Lonnie Johnson, best known for his invention of the super soaker squirt gun, has recently designed a new type of solar energy technology that he says can achieve a conversion efficiency rate ...

Recommended for you

Fitbit to Schumer: We don't sell personal data

2 hours ago

The maker of a popular line of wearable fitness-tracking devices says it has never sold personal data to advertisers, contrary to concerns raised by U.S. Sen. Charles Schumer.

C2D2 fighting corrosion

2 hours ago

Bridges become an infrastructure problem as they get older, as de-icing salt and carbon dioxide gradually destroy the reinforced concrete. A new robot can now check the condition of these structures, even ...

Should you be worried about paid editors on Wikipedia?

6 hours ago

Whether you trust it or ignore it, Wikipedia is one of the most popular websites in the world and accessed by millions of people every day. So would you trust it any more (or even less) if you knew people ...

User comments : 0