Study shows how disruption of spectrin-actin network causes lens cells in the eye to lose shape

Sep 14, 2009
The regular hexagonal arrangement of lens fiber cells is disrupted in the absence of tropomodulin1 (right). Credit: Nowak, R.B., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200905065.

A network of proteins underlying the plasma membrane keeps epithelial cells in shape and maintains their orderly hexagonal packing in the mouse lens, say Nowak et al. The study will appear in the September 21, 2009 issue of the Journal of Cell Biology (online September 14).

Spectrin, F-actin, and associated proteins form a meshwork that supports and shapes the plasma membrane of . A similar network underlies the membranes of other cell types, including lens fiber cells: elongated epithelial cells that encircle vertebrate lenses in concentric layers, appearing in cross section as tightly packed hexagons. Actin filaments within this membrane skeleton are stabilized by their association with members of the tropomyosin and tropomodulin families of actin-binding proteins.

In mice lacking tropomodulin1, gamma-tropomyosin was also lost from the membrane skeleton of lens fiber cells. F-actin and spectrin remained associated with the cell membrane, but gaps appeared in the usually continuous network, suggesting that the two actin-binding proteins stabilize a subset of required to link the network together.

Scanning electron microscopy revealed that fiber cell protrusions, which interlock with neighboring cells, were distorted and irregularly arranged in the absence of tropomodulin1. And although the fiber cells appeared hexagonal when first forming at the lens' equator, they often became misshapen and disorganized as they matured and moved toward the lens' center.

Senior author Velia Fowler thinks that disruption of the spectrin-actin network alters the adhesive interactions between neighboring cells, causing their shapes and packing to become disordered in response to the mechanical stresses associated with lens growth and eye movements.

More information: Nowak, R.B., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200905065.

Source: Rockefeller University (news : web)

Explore further: Geometry, programmed death might have enabled evolution of multicellularity

add to favorites email to friend print save as pdf

Related Stories

How actin networks are actin'

Jan 02, 2008

Dynamic networks of growing actin filaments are critical for many cellular processes, including cell migration, intracellular transport, and the recovery of proteins from the cell surface. In this week’s issue of the open-access ...

Fibroblasts invade at a snail's pace

Feb 02, 2009

A transcription factor known to drive the formation of fibroblasts during development also promotes their ability to invade and remodel surrounding tissues, report Rowe et al. in the February 9, 2009 issue ...

Using a light touch to measure protein bonds

Jun 30, 2008

MIT researchers have developed a novel technique to measure the strength of the bonds between two protein molecules important in cell machinery: Gently tugging them apart with light beams.

Recommended for you

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

User comments : 0