Scientist finds alternate explanation for dune formation on Titan

Aug 25, 2009
Detail from a Cassini radar image of sand dunes on Titan
Detail from a Cassini radar image of sand dunes on Titan. (Photo: NASA/JPL)

A new and likely controversial paper has just been published online in Nature Geoscience by LSU Department of Geography and Anthropology Chair Patrick Hesp and United States Geological Survey scientist David Rubin. The paper, "Multiple origins of linear dunes on Earth and Titan," examines a possible new mechanism for the development of very large linear dunes formed on the surface of Titan, Saturn's largest moon.

The authors examined the linear - or longitudinal - dunes that stretch across the of China's Qaidam Basin, finding them composed of sand and some salt and silt. The latter two elements make the dunes cohesive or sticky.

According to the study, this leads to a complete change in dune form from transverse dunes to linear dunes, even though the wind speed and direction does not change. Typically transverse dunes are formed by winds from a narrow directional range while longitudinal or linear dunes are formed by winds from two obliquely opposing directions. These findings offer an alternative interpretation of similar dunes found on .

Hesp and Rubin suggest that if the giant linear dunes found on the surface of Titan are also formed from cohesive sediment, then they too could be formed by single-direction winds. This is in sharp contrast to earlier studies, which assumed that the sediments were loose and interpreted the dune shape as evidence of winds coming from alternating directions.

The alternative hypothesis that Titan's linear are formed in cohesive sediment has significant implications for studies on Titan; if the Hesp and Rubin alternative is correct, new hypotheses regarding the composition, origin, evolution, grain size, stickiness, quantity, global transport patterns and suitability for wind transport of Titan's sediment; the velocities, directions and seasonal patterns of Titan's winds; and overall surface wetness will all have to be completely reassessed.

Source: Louisiana State University (news : web)

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

Cassini Maps Global Pattern of Titan's Dunes

Feb 27, 2009

(PhysOrg.com) -- Titan's vast dune fields, which may act like weather vanes to determine general wind direction on Saturn's biggest moon, have been mapped by scientists who compiled four years of radar data ...

Titan's Seas Are Sand

May 04, 2006

Until a couple of years ago, scientists thought the dark equatorial regions of Titan might be liquid oceans. New radar evidence shows they are seas -- but seas of sand dunes like those in the Arabian or Namibian ...

Giant Crater on Titan

Feb 17, 2005

A giant impact crater the size of Iowa was spotted on Saturn's moon Titan by NASA's Cassini radar instrument during Tuesday's Titan flyby. Cassini flew within 1,577 kilometers (980 miles) of Titan's surface ...

Dazzling Dunes on Mars

Aug 10, 2004

As NASA's Opportunity rover creeps farther into "Endurance Crater," the dune field on the crater floor appears even more dramatic. On the left, an approximate true-color image highlights the reddish-colored ...

What determines the size of giant dunes?

Mar 04, 2009

Physicists at the Laboratory of Physics and Mechanics of Heterogeneous Media (CNRS / Université Paris Diderot / ESPCI ParisTech / Université Pierre et Marie Curie) have shown, in collaboration with scientists ...

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.