Dazzling Dunes on Mars

August 10, 2004
Dazzling Dunes on Mars

As NASA's Opportunity rover creeps farther into "Endurance Crater," the dune field on the crater floor appears even more dramatic. On the left, an approximate true-color image highlights the reddish-colored dust.

On the right, a false-color version of the same image shows that the dune crests have accumulated more dust than the flanks of the dunes and the flat surfaces between them. Also evident is a "blue" tint on the flat surfaces as compared to the dune flanks. This results from the presence of the hematite-containing spherules ("blueberries") that accumulate on the flat surfaces.


Sinuous tendrils of sand less than 1 meter (3.3 feet) high extend from the main dune field toward the rover. Scientists hope to send the rover down to one of these tendrils in an effort to learn more about the characteristics of the dunes. Dunes are a common feature across the surface of Mars, and knowledge gleaned from investigating the Endurance dunes close-up may apply to similar dunes elsewhere.

Before the rover heads down to the dunes, rover drivers must first establish whether the slippery slope that leads to them is firm enough to ensure a successful drive back out of the crater. Otherwise, such hazards might make the dune field a true sand trap.

Source: NASA

Explore further: Living blanket, water diviner, wild pet: a cultural history of the dingo

Related Stories

Curiosity Mars rover heads toward active dunes

November 17, 2015

On its way to higher layers of the mountain where it is investigating how Mars' environment changed billions of years ago, NASA's Curiosity Mars rover will take advantage of a chance to study some modern Martian activity ...

Mars Rover Curiosity reaches sand dunes

December 11, 2015

NASA's Curiosity Mars rover has begun an up-close investigation of dark sand dunes up to two stories tall. The dunes are on the rover's trek up the lower portion of a layered Martian mountain.

Recommended for you

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.