Related topics: atmosphere · cassini spacecraft · saturn · moon

Cassini explores ring-like formations around Titan's lakes

Using observations from the international Cassini spacecraft, scientists have explored the ring-like mounds that wrap around some of the pools found at the poles of Saturn's largest moon, Titan. The study reveals more about ...

The mission of a lifetime: a drone on Titan in 2034 (Update)

Elizabeth Turtle was overjoyed when, on June 26, she received a call from NASA: her project to send a drone quadcopter to Titan, Saturn's largest moon, was given the green light, which came with a budget of nearly a billion ...

Did comet impacts jump-start life on Earth?

Comets screaming through the atmosphere of early Earth at tens of thousands of miles per hour likely contained measurable amounts of protein-forming amino acids. Upon impact, these amino acids self-assembled into significantly ...

NASA's Webb Telescope will survey Saturn and Titan

If you stop a random person on the sidewalk and ask them what their favorite planet is, chances are their answer will be Saturn. Saturn's stunning rings are a memorable sight in any backyard telescope. But there is still ...

Revealing 'hidden' phases of matter through the power of light

Most people think of water as existing in only one of three phases: Solid ice, liquid water, or gas vapor. But matter can exist in many different phases—ice, for example, has more than ten known phases, or ways that its ...

Researchers find ice feature on Saturn's giant moon

Rain, seas and a surface of eroding organic material can be found both on Earth and on Saturn's largest moon, Titan. However, on Titan it is methane, not water, that fills the lakes with slushy raindrops.

page 1 from 23

Titanium

Titanium (pronounced /taɪˈteɪniəm/) is a chemical element with the symbol Ti and atomic number 22. Sometimes called the “space age metal”, it has a low density and is a strong, lustrous, corrosion-resistant (including to sea water, aqua regia and chlorine) transition metal with a silver color. Titanium can be alloyed with iron, aluminium, vanadium, molybdenum, among other elements, to produce strong lightweight alloys for aerospace (jet engines, missiles, and spacecraft), military, industrial process (chemicals and petro-chemicals, desalination plants, pulp, and paper), automotive, agri-food, medical prostheses, orthopedic implants, dental and endodontic instruments and files, dental implants, sporting goods, jewelry, mobile phones, and other applications. Titanium was discovered in England by William Gregor in 1791 and named by Martin Heinrich Klaproth for the Titans of Greek mythology.

The element occurs within a number of mineral deposits, principally rutile and ilmenite, which are widely distributed in the Earth's crust and lithosphere, and it is found in almost all living things, rocks, water bodies, and soils. The metal is extracted from its principal mineral ores via the Kroll process or the Hunter process. Its most common compound, titanium dioxide, is used in the manufacture of white pigments. Other compounds include titanium tetrachloride (TiCl4) (used in smoke screens/skywriting and as a catalyst) and titanium trichloride (TiCl3) (used as a catalyst in the production of polypropylene).

The two most useful properties of the metal form are corrosion resistance and the highest strength-to-weight ratio of any metal. In its unalloyed condition, titanium is as strong as some steels, but 45% lighter. There are two allotropic forms and five naturally occurring isotopes of this element; 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium's properties are chemically and physically similar to zirconium.

This text uses material from Wikipedia, licensed under CC BY-SA