Researchers reveal ocean acidification at Station ALOHA

Aug 06, 2009
This image shows the deployment of the spar buoy off the stern of the R/V Ka'Imikai-O-Kanaloa. Credit: Image courtesy of University of Hawaii at Manoa HOT/SOEST.

The burning of fossil fuels has released tremendous amounts of the greenhouse gas carbon dioxide (CO2) into the atmosphere, significantly impacting global climate. Were it not for the absorption of CO2 by the oceans, the alarming growth of atmospheric CO2 concentration would be substantially greater than it is.

However, this beneficial role of the oceans as a CO2 "scrubber" does not come without undesired consequences. When dissolved, CO2 acts as an acid, and lowers seawater pH.

Since the beginning of the industrial age, CO2-driven acidification of the surface oceans has already caused a 0.1 unit lowering of pH, and models suggest that another 0.3 pH unit drop by the year 2050 is likely. Continued acidification of the sea may have a host of negative impacts on marine biota, and has the potential to alter the rates of ocean biogeochemical processes.

Despite the global environmental importance of ocean acidification, there are few studies of sufficient duration, accuracy and sampling intensity to document the rate of change of ocean pH and shed light on the factors controlling its variability. In 1988, Dave Karl and Roger Lukas of the School of Ocean, Earth Science and Technology (SOEST) at the University of Hawai'i at Mānoa founded the Hawaii Ocean Time-series (HOT) program, in part to establish a long-term record of the oceanic response to rising atmospheric CO2.

Monthly research cruises to Station ALOHA, north of Oahu, have yielded after 20 years the most detailed record to date on ocean acidification in the Pacific. Reporting in this week's issue of Proceedings of the National Academy of Sciences, lead author and former SOEST researcher John Dore (now at Montana State University) presents an analysis of the changes of pH at Station ALOHA over time and depth.

Dore, along with SOEST co-authors Karl, Lukas, Matt Church and Dan Sadler, found that over the two decades of observation, the surface ocean grew more acidic at exactly the rate expected from chemical equilibration with the atmosphere. However, that rate of change varied considerably on seasonal and inter-annual timescales, and even reversed for one period of nearly five years. The year-to-year changes appear to be driven by climate-induced changes in mixing and attendant biological responses to mixing events.

The authors also found distinct layers at depth in which pH declines were actually faster than at the surface. Dore and colleagues attribute these strata of elevated acidification rates to increases in biological activity and to the intrusion at Station ALOHA of remotely formed water masses with different chemical histories.

More information: Physical and biogeochemical modulation of in the central North Pacific; John E. Dore, Roger Lukas, Daniel W. Sadler, Matthew J. Church and David M. Karl PNAS July 28, 2009 vol. 106 no. 30 12235-12240; Open Access article available online at http://www.pnas.org/content/106/30/12235

Source: University of Hawaii at Manoa

Explore further: NASA balloons begin flying in Antarctica for 2014 campaign

add to favorites email to friend print save as pdf

Related Stories

Acidifying oceans add urgency to CO2 cuts

Jul 03, 2008

It's not just about climate change anymore. Besides loading the atmosphere with heat-trapping greenhouse gases, human emissions of carbon dioxide have also begun to alter the chemistry of the ocean—often called the cradle ...

Oceans turning to acid from rise in CO2

Jun 30, 2005

A report issued by the Royal Society in the U.K. sounds the alarm about the world's oceans. "If CO2 from human activities continues to rise, the oceans will become so acidic by 2100 it could threaten marine life in ways we ...

Recommended for you

Scientists make strides in tsunami warning since 2004

10 hours ago

The 2004 tsunami led to greater global cooperation and improved techniques for detecting waves that could reach faraway shores, even though scientists still cannot predict when an earthquake will strike.

Trade winds ventilate the tropical oceans

11 hours ago

Long-term observations indicate that the oxygen minimum zones in the tropical oceans have expanded in recent decades. The reason is still unknown. Now scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

wawadave
1 / 5 (1) Aug 06, 2009
More DPS

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.