Professor sheds light on DNA mechanisms

Jul 17, 2009

By manipulating individual atoms in DNA and forming unique molecules, a Georgia State University researcher hopes to open new avenues in research towards better understanding the mechanisms of DNA replication and transcription, and perhaps leading to new treatments for diseases.

Chemistry and professor Zhen Huang and his lab were able, for the first time, to manipulate methyl and phosphate groups of molecules in DNA that has been altered to contain selenium in order to bring them close enough together to form .

Such interactions may reduce the energy needed for a process called DNA duplex separation, thereby playing a role in the unwinding of DNA, which must happen in order for the genetic code to be copied and transcribed during and transcription. The research also helps to explain how energy is used in the process, Huang said.

“Assume that you want to do something, like to move an object from downstairs to upstairs, or building a pyramid where heavy blocks have to be transported,” Huang said. “You need lots of energy for these processes.

“If you need lots of energy, it will be a slow process or become inhibited because it consumes too much energy.”

With DNA in humans, the genome is comprised of about 3 billion base pairs, which are part of DNA's “ladder” in the which forms the code that causes certain genetic traits. If it takes a lot of energy to unwind DNA in order to duplicate, the process is slowed. On the other hand, if cellular dividing is too fast, DNA isn’t copied properly with full length, which causes unhealthy cells to be formed.

New research directions may open from the study, which could also have practical implications, Huang said, such as better understanding how RNA, which is involved in protein synthesis, is transcribed and works.

If scientists know the shape and structure of and , scientists can design drugs to bind to the molecules in question — inhibiting the expression and progression of a disease, thus killing it off — whether it’s cancer, HIV or any other viruses.

The research appears in the June 8, 2009 edition of Chemical & Engineering News and in the June 2009 edition of Organic Letters.

Provided by Georgia State University (news : web)

Explore further: Four billion-year-old chemistry in cells today

add to favorites email to friend print save as pdf

Related Stories

Backtracking on DNA

Jun 23, 2009

(PhysOrg.com) -- Accuracy is essential for life, so in converting the information stored in DNA into a form in which it can be used, a high level of precision is required. Dr Tanniemola Liverpool from the ...

Reversing the conventional DNA wisdom

Dec 04, 2008

(PhysOrg.com) -- The copying of DNA's master instructions into messenger molecules of RNA, a process known as DNA transcription, has always been thought to be a unidirectional process whereby a copying machine starts and ...

DNA constraints control structure of attached macromolecules

Jun 28, 2005

A new method for manipulating macromolecules has been developed by researchers at the University of Illinois at Urbana-Champaign. The technique uses double-stranded DNA to direct the behavior of other molecules. In previous ...

Early-stage gene transcription creates access to DNA

Oct 06, 2008

A gene contained in laboratory yeast has helped an international team of researchers uncover new findings about the process by which protein molecules bind to control sequences in genes in order to initiate gene expression, ...

Recommended for you

A new approach to creating organic zeolites

Jul 24, 2014

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

User comments : 0