NASA Research to Help Aircraft Avoid Ocean Storms, Turbulence

Jul 07, 2009
NASA and NCAR are working to develop a near-real-time forecast that identifies turbulence from breaking gravity waves that are generated by rapidly rising deep convection. This image from NASA's MODIS instrument (Moderate Resolution Imaging Spectroradiometer) shows gravity waves over the ocean. Atmospheric gravity waves (also called atmospheric internal waves) occur either when a uniform layer of air blows over a large obstacle, like a mountain or island or when rapidly rising, deep convection perturbs a stable layer from below, as in the oceanic case we have illustrated. When the air hits the obstacle or is disturbed by rising convection from below, the horizontal ribbons of uniform air are disturbed, which forms a wave pattern. This wave pattern in the air impresses itself onto sea waves when it touches the surface of the ocean. In addition to the surface mimicking the wave pattern, wave clouds can form as well, creating potential turbulence for aircraft.

(PhysOrg.com) -- NASA is funding the development of a prototype system to provide aircraft with updates about severe storms and turbulence as they fly across remote ocean regions.

Scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., in partnership with colleagues at the University of Wisconsin, are developing a system that combines satellite data and computer models with cutting-edge artificial intelligence techniques. The goal is to identify and predict rapidly evolving storms and other potential areas of .

"Turbulence is the leading cause of injuries in commercial aviation," said John Haynes, program manager in the Earth Science Division's Applied Sciences Program at NASA Headquarters in Washington. "This new work to detect the likelihood of turbulence associated with oceanic storms using key space-based indicators is of crucial importance to pilots."

The system is designed to help guide pilots away from intense weather. A variety of NASA spacecraft observations are being used in the project, including data from NASA's Terra, Aqua, Tropical Rainfall Measuring Mission, CloudSat and CALIPSO satellites.

The will identify areas of turbulence in clear regions of the atmosphere as well as within storms. It is on track for testing next year. Pilots on selected transoceanic routes will receive real-time turbulence updates and provide feedback. When the system is finalized, it will provide pilots and ground-based controllers with text-based maps and graphical displays showing regions of likely turbulence and storms.

"Pilots currently have little weather information as they fly over remote stretches of the ocean, which is where some of the worst turbulence occurs," said scientist John Williams, one of the project leads at NCAR. "Providing pilots with at least an approximate picture of developing storms could help guide them safely around areas of potentially severe turbulence."

NCAR currently provides real-time maps of turbulence at various altitudes over the continental United States. Williams and his colleagues are building on this expertise to identify turbulence over oceans. The team has created global maps of clear air turbulence based on global computer weather models that include winds and other instabilities in the atmosphere. Drawing on satellite images of storms, the scientists also have created global views of the tops of clouds. Higher cloud tops often are associated with more intense storms, although not necessarily with turbulence.

The next step is to pinpoint areas of possible turbulence within and around intense storms. The team will study correlations between storms and turbulence over the continental United States, where weather is closely observed, and then infer patterns of turbulence for storms over oceans.

In addition to providing aircraft and ground controllers with up-to-the-minute maps of turbulence, the NCAR team is turning to an technique, known as "random forests," to provide short-term forecasts.

Random forests, which have proven useful for forecasting thunderstorms over land, consist of many decision trees that each cast a yes-or-no "vote" on crucial elements of the storm at future points in time and space. This enables scientists to forecast the movement and strength of the storm during the next few hours.

"Our goal is to give pilots a regularly updated picture of the likely storms ahead as they fly over the , so they can take action to minimize turbulence and keep their aircraft out of danger," explained NCAR scientist Cathy Kessinger, a project team member.

The NCAR project is funded by NASA's Applied Sciences Program, which seeks to translate NASA's investment in Earth observations into applications that address real problems. The program and its partners are working to bridge the gap between research results and operational aviation weather products in such areas as in-flight icing, convective weather, turbulence, volcanic ash and space weather.

Provided by JPL/NASA (news : web)

Explore further: Magnitude-7.2 earthquake shakes Mexican capital

add to favorites email to friend print save as pdf

Related Stories

New system helps aircraft avoid turbulence

Sep 06, 2007

A new turbulence detection system now being tested is successfully alerting pilots to patches of rough air as they fly through clouds. The system, designed by the National Center for Atmospheric Research (NCAR) ...

NASA wants to smooth bumpy plane rides

Jul 20, 2005

Most airline passengers and even flight crews don't like turbulence, so NASA researchers have developed an automatic turbulence reporting system.

View of the Upper Atmosphere

Dec 05, 2005

Scientists from NASA and the National Science Foundation discovered a way to combine ground and space observations to create an unprecedented view of upper atmosphere disturbances during space storms.

Recommended for you

Magnitude-7.2 earthquake shakes Mexican capital

Apr 18, 2014

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

User comments : 0

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

UN weather agency warns of 'El Nino' this year

The UN weather agency Tuesday warned there was a good chance of an "El Nino" climate phenomenon in the Pacific Ocean this year, bringing droughts and heavy rainfall to the rest of the world.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...