Glucose to glycerol conversion in long-lived yeast provides anti-aging effects

May 08, 2009

Cell biologists have found a more filling substitute for caloric restriction in extending the life span of simple organisms. In a study published May 8 in the open-access journal PLoS Genetics, researchers from the University of Southern California Andrus Gerontology Center show that yeast cells maintained on a glycerol diet live twice as long as normal -- as long as yeast cells on a severe caloric-restriction diet. They are also more resistant to cell damage.

Many studies have shown that caloric restriction can extend the life span of a variety of laboratory animals. Caloric restriction is also known to cause major improvements in a number of markers for cardiovascular diseases in humans. This study is the first to propose that "dietary substitution" can replace "dietary restriction" in a living species.

"If you add glycerol, or restrict caloric intake, you obtain the same effect," said senior author Valter Longo. "It's as good as calorie restriction, yet cells can take it up and utilize it to generate energy or for the synthesis of cellular components."

Longo and colleagues Min Wei and Paola Fabrizio introduced a glycerol diet after discovering that genetically engineered long-lived that survive up to 5-fold longer than normal have increased levels of the genes that produce glycerol. In fact, they convert virtually all the glucose and ethanol into glycerol. Notably, these cells have a reduced activity in the TOR1/SCH9 pathway, which is also believed to extend life span in organisms ranging from worms to mice.

When the researchers blocked the genes that produce glycerol, the cells lost most of their life span advantage. However, Longo and colleagues believe that the "glucose to glycerol" switch represents only a component of the protective systems required for the extended survival. The current study indicates that biosynthesis is an important process in the metabolic switch that allows this simple organism to activate its protective systems and live longer.

"This is a fundamental observation in a very simple system," Longo said, "that at least introduces the possibility that you don't have to be calorie-restricted to achieve some of the remarkable protective effects of the hypocaloric diet observed in many organisms, including humans. It may be sufficient to substitute the carbon source and possibly other macronutrients with nutrients that do not promote the "pro-aging" changes induced by sugars."

More information: Wei M, Fabrizio P, Madia F, Hu J, Ge H, et al. (2009) Tor1/Sch9-Regulated Carbon Source Substitution Is as Effective as in Extension. PLoS Genet 5(5): e1000467. doi:10.1371/journal.pgen.1000467, http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1000467

Source: Public Library of Science (news : web)

Explore further: Researchers find protein necessary for fertility performs different roles in sperm, eggs

add to favorites email to friend print save as pdf

Related Stories

Dieting won't add many years to life

Aug 30, 2005

Scientists have found severely cutting calories for decades may add a few years to a human life span, but won't enable humans to live to 125 years or more.

Low-calorie diet: Longer life?

Apr 05, 2006

St. Louis scientists are starting a 2-year study to confirm a short Louisiana State University trial suggesting low-calorie diets result in longer life.

Recommended for you

In a role reversal, RNAs proofread themselves

Jan 29, 2015

Building a protein is a lot like a game of telephone: information is passed along from one messenger to another, creating the potential for errors every step of the way. There are separate, specialized enzymatic ...

Growing functioning brain tissue in 3D

Jan 29, 2015

Researchers at the RIKEN Center for Developmental Biology in Japan have succeeded in inducing human embryonic stem cells to self-organize into a three-dimensional structure similar to the cerebellum, providing ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

barakn
1 / 5 (1) May 08, 2009
Finally, something to do with all the excess glycerol from bio-diesel production.
kerry
not rated yet May 09, 2009
hahaha nice, barakn

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.