Glucose to glycerol conversion in long-lived yeast provides anti-aging effects

May 08, 2009

Cell biologists have found a more filling substitute for caloric restriction in extending the life span of simple organisms. In a study published May 8 in the open-access journal PLoS Genetics, researchers from the University of Southern California Andrus Gerontology Center show that yeast cells maintained on a glycerol diet live twice as long as normal -- as long as yeast cells on a severe caloric-restriction diet. They are also more resistant to cell damage.

Many studies have shown that caloric restriction can extend the life span of a variety of laboratory animals. Caloric restriction is also known to cause major improvements in a number of markers for cardiovascular diseases in humans. This study is the first to propose that "dietary substitution" can replace "dietary restriction" in a living species.

"If you add glycerol, or restrict caloric intake, you obtain the same effect," said senior author Valter Longo. "It's as good as calorie restriction, yet cells can take it up and utilize it to generate energy or for the synthesis of cellular components."

Longo and colleagues Min Wei and Paola Fabrizio introduced a glycerol diet after discovering that genetically engineered long-lived that survive up to 5-fold longer than normal have increased levels of the genes that produce glycerol. In fact, they convert virtually all the glucose and ethanol into glycerol. Notably, these cells have a reduced activity in the TOR1/SCH9 pathway, which is also believed to extend life span in organisms ranging from worms to mice.

When the researchers blocked the genes that produce glycerol, the cells lost most of their life span advantage. However, Longo and colleagues believe that the "glucose to glycerol" switch represents only a component of the protective systems required for the extended survival. The current study indicates that biosynthesis is an important process in the metabolic switch that allows this simple organism to activate its protective systems and live longer.

"This is a fundamental observation in a very simple system," Longo said, "that at least introduces the possibility that you don't have to be calorie-restricted to achieve some of the remarkable protective effects of the hypocaloric diet observed in many organisms, including humans. It may be sufficient to substitute the carbon source and possibly other macronutrients with nutrients that do not promote the "pro-aging" changes induced by sugars."

More information: Wei M, Fabrizio P, Madia F, Hu J, Ge H, et al. (2009) Tor1/Sch9-Regulated Carbon Source Substitution Is as Effective as in Extension. PLoS Genet 5(5): e1000467. doi:10.1371/journal.pgen.1000467, http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1000467

Source: Public Library of Science (news : web)

Explore further: Fighting bacteria—with viruses

add to favorites email to friend print save as pdf

Related Stories

Dieting won't add many years to life

Aug 30, 2005

Scientists have found severely cutting calories for decades may add a few years to a human life span, but won't enable humans to live to 125 years or more.

Low-calorie diet: Longer life?

Apr 05, 2006

St. Louis scientists are starting a 2-year study to confirm a short Louisiana State University trial suggesting low-calorie diets result in longer life.

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

barakn
1 / 5 (1) May 08, 2009
Finally, something to do with all the excess glycerol from bio-diesel production.
kerry
not rated yet May 09, 2009
hahaha nice, barakn