Magnetism Governs Properties of Iron-Based Superconductors

Mar 18, 2009
NIST research shows that magnetism plays a key role in iron pnictide superconductors’ crystal structure. (Iron is purple; arsenic is yellow; calcium is green.) Only if the iron’s magnetism is taken into account do calculations of the distance between these crystal layers match up with lab measurements. Magnetism’s importance to their physical properties make it a likely factor in the iron pnictides’ ability to superconduct, say team members. Credit: Yildirim, NIST

( -- Though a year has passed since the discovery of a new family of high-temperature superconductors, a viable explanation for the iron-based materials’ unusual talent remains elusive. But a team of scientists working at the National Institute of Standards and Technology (NIST) may be close to the answer.

The team has found strong evidence that magnetism is a pivotal factor governing the physical properties of pnictides, a group of that without resistance at temperatures of up to 56 kelvin (-217 degrees celsius). Iron pnictides are composed of regularly spaced layers of iron sandwiched between other substances. And although -217 might sound pretty cold, they are the first class of materials found to superconduct at that high a temperature since the discovery of copper-based superconductors more than two decades ago.

The team’s evidence shows that without taking magnetism into account, theoretical calculations of iron pnictides’ do not line up with actual lab measurements. Factor in magnetism, though, and these discrepancies vanish—a decisive difference that, according to theorist Taner Yildirim, could imply that magnetism is also key to iron pnictide superconductivity.

“Without considering magnetism, for example, the calculated distance between iron layers—a distance that has been thoroughly measured—comes out to be wrong,” says Yildirim, of NIST’s Center for Neutron Research. “However, provided that we consider spin in our calculations, we can explain almost all of the iron pnictides’ structural and dynamic properties.”

Yildirim gave an invited talk at the March meeting of the American Physical Society, where he presented theoretical evidence demonstrating how magnetism controls basic aspects of iron pnictides as the position of the atoms, the materials’ phase transition i.e. the sudden changes in the structure with temperature, and—probably, Yildirim says—their .

“Determining the mechanism of superconductivity in iron pnictide systems is very important in solving the long-standing mystery of the high temperature superconductor phenomena in general,” Yildirim said. “Once we have such an understanding of this strange phenomenon, we can then make predictions and design new materials with even higher superconductivity temperatures.”

More information: T. Yildrim. Competing magnetic interactions, structural phase transition, and the unprecedented giant coupling of Fe-spin state and the As-As interactions in iron-pnictide. Presented at the March Meeting of the American Physical Society, March 17, 2009. An abstract is available at .

Provided by National Institute of Standards and Technology (news : web)

Explore further: Warming up the world of superconductors

add to favorites email to friend print save as pdf

Related Stories

New theory for latest high-temperature superconductors

Aug 13, 2008

Physicists from Rice and Rutgers universities have published a new theory that explains some of the complex electronic and magnetic properties of iron "pnictides." In a series of startling discoveries this spring, pnictides ...

Physicists offer new theory for iron compounds

Mar 12, 2009

An international team of physicists from the United States and China this week offered a new theory to both explain and predict the complex quantum behavior of a new class of high-temperature superconductors.

Putting the Pressure on Iron-Based Superconductors

Mar 05, 2009

( -- Traditionally, magnetism and superconductivity don't mix. For more than 20 years, the only known superconductors that worked at so-called "high" temperatures (above 30 K, or about -406 degrees ...

Secrets behind high temperature superconductors revealed

Feb 22, 2009

( -- Scientists from Queen Mary, University of London and the University of Fribourg (Switzerland) have found evidence that magnetism is involved in the mechanism behind high temperature superconductivity.

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.