Student Proving Walls (Even Sofas) Can Talk

Mar 04, 2009
Jon McKinney (left) and Dr. Glenn Morrison, both of Missouri S&T, want to help epidemiologists identify what's triggering diseases like asthma in children. Image: B.A. Rupert

Most college students will admit to searching their couch cushions for extra coins to do laundry. But Jon McKinney's cushion hunt isn't about finding money. He wants to help epidemiologists identify what's triggering diseases like asthma in children, and he's got the backing of the Environmental Protection Agency.

Working with Dr. Glenn Morrison, associate professor of environmental engineering at Missouri University of Science and Technology, the junior is developing the science behind “building forensics,” an emerging field that lies at the outer edge of environmental engineering.

“Our goal is to identify what's happened inside a home based on the 'unique fingerprints' of the chemicals we find,” McKinney says.

The pair is using nondestructive techniques to take samples from couch cushions, drywall and even concrete to identify the concentration of chemicals that had been in the home. If successful, the technique would make it easier for scientists to reliably identify the chemical causes for many diseases.

The problem of indoor pollution has escalated in recent years as homes have been made more energy efficient, reducing the amount of natural ventilation and allowing a buildup of potentially harmful substances in the air. Many researchers believe the air found inside people's homes can be more hazardous to their health than the smog and other environmental pollutants they are exposed to during outdoor activities.

“You can choose what water you drink. You can choose what you eat. But you can't choose what air you breathe,” says McKinney, explaining his interest in the field. “This work combines nature, ecology and chemistry - all the things I like.”

The EPA estimates Americans spend roughly 90 percent of their time indoors, and indoor air pollution - caused by sources ranging from paints to cleaning solvents, personal care products to furnishings - has been linked to a wide variety of adverse health effects. Children, the elderly, and those with chronic ailments like chronic obstructive pulmonary disease are particularly vulnerable, perhaps in part due to their weaker immune systems and increased time spent indoors.

Many people don't realize the amount of chemicals they introduce into their homes every day. For example, dry-cleaned clothes can emit perchloroethylene, a chemical that has been shown to cause cancer in animals. Studies indicate that people breathe low levels of this chemical in homes where dry-cleaned goods are stored.

McKinney is currently establishing the “fingerprint” of chemicals in the type of foam materials that are commonly present in furniture cushions.

McKinney of Kansas City, Mo., and a junior in environmental engineering at Missouri S&T, is receiving more than $45,000 to support his education and research through the EPA's Greater Research Opportunities Research Fellowship. Prior to receiving the fellowship, McKinney received funding for his research through Morrison's National Science Foundation CAREER award, which recognizes a young researcher's dual commitment to scholarship and education.

Provided by Missouri University of Science and Technology

Explore further: Firm combines 3-D printing with ancient foundry method

add to favorites email to friend print save as pdf

Related Stories

Ocean pipes 'not cool,' would end up warming climate

Mar 19, 2015

To combat global climate change caused by greenhouse gases, alternative energy sources and other types of environmental recourse actions are needed. There are a variety of proposals that involve using vertical ...

Recommended for you

Firm combines 3-D printing with ancient foundry method

Mar 27, 2015

A century-old firm that's done custom metal work for some of the nation's most prestigious buildings has combined 3-D printing and an ancient foundry process for a project at the National Archives Building in Washington, ...

Wearable device helps vision-impaired avoid collision

Mar 26, 2015

People who have lost some of their peripheral vision, such as those with retinitis pigmentosa, glaucoma, or brain injury that causes half visual field loss, often face mobility challenges and increased likelihood ...

Applications of optical fibre for sensors

Mar 26, 2015

Mikel Bravo-Acha's PhD thesis has focused on the applications of optical fibre as a sensor. In the course of his research, conducted at the NUP/UPNA-Public University of Navarre, he monitored a sensor fitted to optical fibre ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.