Self-Programming Hybrid Memristor/Transistor Circuit Could Continue Moore's Law

Feb 26, 2009 By Lisa Zyga feature
(A) An optical micrograph image of two connected nanocrossbar/transistor circuits. Inset is an illustration of a single nanocrossbar device. (B) A scanning electron microscope image of one nanocrossbar region. Image credit: Copyright 2009 National Academy of Sciences, U.S.A.

( -- As researchers strive to increase the density and functionality of circuit elements onto computer chips, one newer option they have is a memory resistor (or “memristor”), the fourth passive circuit element. First predicted to exist in 1971 and fabricated in 2008, memristors are two-terminal devices that change their resistance in response to the total amount of current flowing through them.

By dynamically changing the doping profile inside the memristive materials, scientists can control the current-voltage relationship of the device, thus controlling the “memristance.” Since they don’t lose their state when the electrical power is turned off, memristors also have nonvolatile memory.

However, memristors are passive elements, meaning they cannot introduce energy into a circuit. In order to function, memristors need to be integrated into circuits that contain active elements, such as transistors, which can amplify or switch electronic signals. A circuit containing both memristors and transistors could have the advantage of providing enhanced functionality with fewer components, in turn minimizing chip area and power consumption.

In a recent study, a team of researchers from Hewlett-Packard Laboratories in Palo Alto, California, have fabricated and demonstrated a hybrid memristor/transistor circuit for the first time. The team demonstrated conditional programming of a nanomemristor by the hybrid circuit, showing that the same elements in a circuit can be configured to act as logic, signal routing, and memory. By routing a logic operation’s output signal back onto a memristor, the circuit could even reconfigure itself, opening the doors to a variety of self-programming circuits.

“It actually takes at least a dozen transistors to mimic the electrical properties of a single memristor,” Stan Williams of HP told “Thus, for circuits that require some type of latching or other function performed by a memristor, it is at least conceivable for a designer to replace several active transistors with one passive memristor, which is much smaller than a single transistor. This maintains the capability of the chip while decreasing the number of transistors, which saves both silicon area and power. Thus, it may be possible to continue the equivalent of Moore's law for a couple of generations not by making transistors smaller, but by replacing some subset of them with memristors.”

The HP team’s memristor design consisted of two sets of 21 parallel 40-nm-wide wires crossing over each other to form a crossbar array, fabricated using nanoimprint lithography. A 20-nm-thick layer of the semiconductor titanium dioxide (TiO2) was sandwiched between the horizontal and vertical nanowires, forming a memristor at the intersection of each wire pair. An array of field effect transistors surrounded the memristor crossbar array, and the memristors and transistors were connected to each other through metal traces.

Then the researchers tested the device by performing a basic logic function (AB + CD) from four voltage inputs representing the four values. The operations were performed on two different rows of the memristor crossbar, and the results were routed through the transistors, which amplified the signals and fed the corresponding signal back to the memristor crossbars for programming purposes. In other words, the output signal from the simple logic function of the memristor circuits could be used to reprogram a memristor for a new operation.

“Self-programming is a form of learning,” Williams explained. “Thus, circuits with memristors may have the capacity to learn how to perform a task, rather than have to be programmed to do it.”

As the researchers explained, the basis of the memristor is that the resistance of the device can be changed and be remembered, which is physically manifested by the movement of positively charged oxygen vacancies, which are dopants in a semiconducting TiO2 film. A positive bias voltage can push the vacancies away from an electrode and increase the resistance, whereas a negative bias will attract the vacancies and decrease the resistance. If left alone, the programmed state will remain as it is for at least one year.

The researchers hope that this prototype of a hybrid memristor/transistor circuit will lead to further integrations of memristors with conventional CMOS circuits. In addition, the demonstration of a system that can alter its own programming could lead the way toward a variety of new architectures, such as adaptive synaptic circuits.

More information: Borghetti, Julien; Li, Zhiyong; Straznicky, Joseph; Li, Xuema; Ohlberg, Douglas A. A.; Wu, Wei; Stewart, Duncan R.; and Williams, R. Stanley. “A hybrid nanomemristor/transistor logic circuit capable of self-programming.” PNAS, February 10, 2009, vol. 106, no. 6, 1699-1703.

Copyright 2009
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of

Explore further: Desktop device to make key gun part goes on sale in US

add to favorites email to friend print save as pdf

Related Stories

Ultra-low consumption for the future of electronics

Sep 25, 2014

The European project E2SWITCH is aiming to develop new electronic systems with ultra-low energy consumption. The nine partners, universities, research institutes and companies, are committed to making the ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Recommended for you

Desktop device to make key gun part goes on sale in US

8 hours ago

The creator of the world's first 3D plastic handgun unveiled Wednesday his latest invention: a pre-programmed milling machine that enables anyone to easily make the core component of a semi-automatic rifle.

Minimally invasive surgery with hydraulic assistance

14 hours ago

Endoscopic surgery requires great manual dexterity on the part of the operating surgeon. Future endoscopic instruments equipped with a hydraulic control system will provide added support during minimally ...

Analyzing gold and steel – rapidly and precisely

16 hours ago

Optical emission spectrometers are widely used in the steel industry but the instruments currently employed are relatively large and bulky. A novel sensor makes it possible to significantly reduce their size ...

More efficient transformer materials

16 hours ago

Almost every electronic device contains a transformer. An important material used in their construction is electrical steel. Researchers have found a way to improve the performance of electrical steel and ...

Sensor network tracks down illegal bomb-making

16 hours ago

Terrorists can manufacture bombs with relative ease, few aids and easily accessible materials such as synthetic fertilizer. Not always do security forces succeed in preventing the attacks and tracking down ...

Miniature camera may reduce accidents

17 hours ago

Measuring only a few cubic millimeters, a new type of camera module might soon be integrated into future driver assistance systems to help car drivers facing critical situations. The little gadget can be ...

User comments : 8

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Feb 26, 2009
So they've made an analog memory chip.
2 / 5 (4) Feb 26, 2009
The chips can self-program? Hello, cyber-dyne. Hello, judgement day!
1 / 5 (2) Feb 26, 2009
Yawn, HP. Carly F. got rid of all the great
scientist at HP years ago. Now just have a
bunch of low paid foreign hacks.
2 / 5 (3) Feb 26, 2009
This will be excellent for things like space probes, that need to last a long time and can't be repaired by people. The ability to adapt themselves to compensate for damage and degradation could be a massive benefit.
2.3 / 5 (3) Feb 27, 2009
moj85... They reprogram themselves according to the programming put into them by humans... not by the chip itself. Here is a graph to help:
Hollywood < -------------------------------------- > Science

But yes your comment is kinda amusing.
not rated yet Feb 27, 2009
"If left alone, the programmed state will remain as it is for at least one year".

Does this mean that it cannot retain memory for much more than one year?

In other words it suffers from short term memory loss.

This could be a serious flaw!!!!!!
4.5 / 5 (2) Feb 27, 2009
au-pu..the memory in your pc "forgets" in about eight milliseconds..constantly needing refresh. Once a year refresh...not so bad..

The only thing interesting here is the behavour of the material but they say nothing about how fast it switches,or what voltages are necessary,etc. the rest is as old hat as a telephone patchboard.
HP (invents?)
not rated yet Mar 04, 2009
"If left alone, the programmed state will remain as it is for at least one year".

Does this mean that it cannot retain memory for much more than one year?

In other words it suffers from short term memory loss.

This could be a serious flaw!!!!!!

Uh, no, that would be long-term memory loss. Short-term refers to hours or days.