NEC Develops a Three-Dimensional Chip-Stacked Flexible Memory

Feb 10, 2009
Chip-Stacked Flexible Memory chips (top) , Logic-chip (bottom)

NEC Corporation announced today the development of chip-stacked flexible memory, which can be used to achieve a new system-on-chip (SoC) architecture. The new SoC's architecture consists of separate logic (excluding embedded memory cores) and memory chips (chip-stacked flexible memory) that are closely stacked by using a three-dimensional packaging technology.

NEC developed both a reconfigurable-memory technology that enables the memory chip to change its configuration flexibly, in addition to a memory-data transmission technology that reduces chip-area and latency caused by memory reconfiguration mechanisms.

The memories of conventional SoCs are categorized into two types; embedded memory, such as embedded SRAM or embedded DRAM, which is integrated with logic circuits in an SoC chip; and the second type, general-purpose memory, such as DRAM or Flash memory, which is placed outside of an SoC chip.

The chip-stacked flexible memory developed by NEC is a third kind of memory that features both fast access in the embedded memory and large memory size in the general-purpose memory. It also enables dynamic memory allocation during LSI operation that is effective in SoC's multiple functional IP-cores (functional blocks), which reduces SoCs' design and fabrication costs.

More details on these technologies:

(1) Reconfigurable-memory technology

Many of the new technology's memory cores are tiled in a memory-specified chip and connected to each other through an interconnect on-chip network. The on-chip network, which is usually used to connect IP cores, is applied to connect memory cores.

Memory configuration becomes programmable by switching network connections, which enables an optimum amount of memory capacity to be allocated flexibly.

(2)Memory-data transmission technology

Time-division multiplex and bit-division multiplex transmission technologies deliver rapid read operations that are comparable to embedded memory.

Using time-division multiplex transmission technology, data from memory cores are time-division multiplexed. Since memory cores share on-chip network switching nodes with neighbor cores, the number of nodes can be reduced. Under bit-division multiplex transmission technology, data are bit-divided and each bit-sliced data goes to a different connection line. Therefore, the number of wires in a line can be reduced by reducing effective bit-width.

By using both transmission technologies, the area for an on-chip network is reduced by about 60% and its latency is also reduced by about 40%. As a result, reconfiguration memory carries out rapid read operations, which are comparable in speed to embedded SRAMs without reconfiguration functions.

In the future, IT/NW appliances will become more important to processing both enormous amounts of data in virtual worlds, as represented by the Internet, but also three-dimensional data or four-dimensional data, which adds a time axis, as represented in the real world by sensor net or image recognition. This data can be capitalized on to provide various functions that suit the needs of companies and individuals alike.

Since an SoC implementing more functions requires larger memory size and more IP cores, it is a challenge to efficiently connect between memory and IP cores.

NEC has already embarked on research to resolve the above issues, and has successfully demonstrated the operation of chip-stacked flexible memory, which delivers large-scale SoCs based on such innovative technologies as on-chip network and 3D packaging.

Although 3D packaging technology is now applicable to multi-stacked general-purpose DRAM, multi-stacked Flash memory and small-packaged imager, there is no suitable 3D packaging technology application for SoC. The development of these technologies is expected to contribute to new applications using 3D packaging technologies that will bring about the realization of a large scale SoC. NEC will continue its development towards a future where large-scale SoCs become a reality.

The results of this research will be presented on February 9th at the International Solid-State Circuit Conference (ISSCC) 2009, held in San Francisco, CA, USA, from February 8th to 12th.

Provided by NEC

Explore further: X-ray detector on plastic delivers medical imaging performance

add to favorites email to friend print save as pdf

Related Stories

Self-healing hydrogels ease into production

Nov 01, 2013

Hydrogels are semi-solid materials formed by polymer chains that trap water molecules into three-dimensional gels. They are used in a variety of applications, including soft contact lenses, but the fragile ...

Recommended for you

Ex-Apple chief plans mobile phone for India

16 hours ago

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Health care site flagged in Heartbleed review

Apr 19, 2014

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Apr 19, 2014

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

User comments : 0

More news stories

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

A homemade solar lamp for developing countries

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...