Robo-forklift keeps humans out of harm’s way

Jan 14, 2009 by David Chandler

(PhysOrg.com) -- Researchers in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) are working on a better way to handle supplies in a war zone: a semi-autonomous forklift that can be directed by people safely away from the dangers of the site.

Currently, when supplies arrive at military outposts in war zones such as Iraq, people driving forklifts unload the pallets and put them into storage, and later load them onto trucks to take the material to where it’s needed. These forklift operators must often scramble for cover, slowing the work and putting them at risk.

When completed, the new robotic device will provide a safer way to handle pallet-loaded supplies of everything from truck tires to water containers and construction materials, says Matt Walter, a CSAIL postdoctoral researcher with a lead role in the project. The device is designed to operate outdoors on uneven terrain such as gravel or packed earth.

In Iraq, it has not been uncommon for workers to “have to abandon the forklift three or four times a day because they come under fire,” Walter says. “A lot of the work could be automated,” thus alleviating people’s exposure to danger, “but it’s a very difficult task.”

HEAVY LIFTING IN HOSTILE TERRITORY

The forklift is designed to operate autonomously with high-level direction from a human supervisor who could be physically nearby, or safely ensconced in a remote bunker. In an initial training phase, the forklift learns the basic layout of the storage depot facility, such as where the reception area is, where incoming supply trucks arrive with a load of pallets ready to be stored, and where the storage areas are for those pallets to be deposited. The forklift can then be commanded to transport pallets from one place to another within the depot.

Determining which pallets to pick up and where they need to go requires guidance from a human supervisor, at least for now. The supervisor’s tablet computer, wirelessly linked to the forklift, displays the view from the forklift’s forward-looking video camera. Using stylus gestures on the image, the supervisor indicates the truck to be unloaded, the pallet to be engaged next, and perhaps where on the pallet to insert the forklift tines. The supervisor also speaks to the tablet, indicating the desired destination of the target pallet. As the system gets more sophisticated, the supervisor would need to do less and less, eventually simply gesturing and saying “unload that truck,” for example.

But to ensure that it can always carry out the necessary tasks, if there’s ever a problem with the automated system the machine reverts to a conventional manned forklift whenever someone climbs into the operator’s cabin.

TESTS UNDER WAY

Research began with a small test platform rigged with forklift tines and a variety of sensors and computers that was used for a series of indoor tests and is now continuing with a full-scale prototype being tested outdoors on the MIT campus.

The work is part of several projects at CSAIL focused on “the development of situational awareness for machines,” explains Seth Teller, professor of computer science and engineering and project lead. Situational awareness, Teller says, involves the use of sensing, motion, inference and memory to acquire “a model of the spatial layout of the world and its contents, to allow us to plan and move purposefully in the world.” Humans develop these internal maps of their surroundings without even thinking about it, but “machines can’t yet do it automatically.”

In developing the robotic system, the CSAIL researchers have made extensive use of computer code developed for other projects, including the autonomous vehicle MIT entered in the 2007 DARPA Grand Challenge auto race, in which unmanned cars navigated roads without human intervention, Teller says. That work has been reported in papers in the Journal of Field Robotics, and the forklift project itself is the subject of a paper being submitted for publication at an upcoming robotics conference.

Among the tasks the robot must carry out automatically is avoiding unexpected obstacles, especially people who may be walking around in the area. That turned out to be less of a challenge than expected: “It is possible to detect moving people using laser range scanners,” Walter says. “Things get much harder if people are trying to trick the system by hiding or standing very still,” Teller notes.

The forklift project has involved about 30 faculty, staff and students from MIT as well as from Lincoln Laboratory, Draper Laboratory and BAE Systems. It has been funded by the U.S. Army Logistics Innovation Agency.

Provided by MIT

Explore further: Posture affects infants' capacity to identify objects, study finds

Related Stories

Robo-forklift keeps humans out of harm's way

Jan 21, 2009

(PhysOrg.com) -- Researchers in MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) are working on a better way to handle supplies in a war zone: a semi-autonomous forklift that can be directed ...

Recommended for you

A robot prepared for self-awareness

15 hours ago

A year ago, researchers at Bielefeld University showed that their software endowed the walking robot Hector with a simple form of consciousness. Their new research goes one step forward: they have now developed ...

Future US Navy: Robotic sub-hunters, deepsea pods

Mar 28, 2015

The robotic revolution that transformed warfare in the skies will soon extend to the deep sea, with underwater spy "satellites," drone-launching pods on the ocean floor and unmanned ships hunting submarines.

Festo has BionicANTs communicating by the rules for tasks

Mar 27, 2015

Germany-based automation company Festo, focused on technologies for tasks, turns to nature for inspiration, trying to take the cues from how nature performs tasks so efficiently. "Whether it's energy efficiency, ...

Virtual robotization for human limbs

Mar 26, 2015

Recent advances in computer gaming technology allow for an increasingly immersive gaming experience. Gesture input devices, for example, synchronise a player's actions with the character on the screen. Entertainment ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

WolfAtTheDoor
not rated yet Jan 15, 2009
"%u201CIt is possible to detect moving people using laser range scanners,%u201D Walter says"

So if you are sleeping in the corner, you could get smooshed?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.