NEC develops a nonvolatile magnetic flip flop that enables standby-power-free SoCs

Jan 05, 2009
Die photo

NEC Corporation today announced that it has succeeded in demonstrating the operation of a nonvolatile magnetic flip flop (MFF).

The demonstration provides an outlook into the possibility of creating SoCs that are developed using standard tools already familiar to LSI designers, which require zero power while in a standby state, and can rapidly return to activity.

NEC’s MFF operations were produced by integrating data flip flop (DFF) with magnetic tunnel junctions (MTJ), in addition to circuits that switch the direction of MTJ’s magnetization. Please see below for more detail on MFF features.

1.The MFF operates on the same voltage as existing flip flops, which enables its versatile use as a library tool for automatic layout design of SoCs.

2. During normal operation, the MFF is designed to prevent MTJs from affecting MFF clock frequency, as it can operate at the same 3.5 GHz as DFF.

3. In the event of a sudden power failure, the MTJs may carry out MFF functions.

The MTJs in the MFF were created using the same process as the MTJs in the 250-MHz high speed MRAM that was originally developed, designed and fabricated by NEC, and features MTJ layers being incorporated into an inter-metal oxide layer. The process makes it easy for both MFFs and MRAMs to be integrated into one SoC.

SoC power consumption tends to increase in relation to miniaturization and greater circuit sophistication. However, the demand for electronic appliances that use SoCs and consume low power is steadily increasing. It has now become an essential task for electronic appliance development to address the need for both advanced functions and low power consumption. The development of mobile appliances powered by batteries is particularly influenced in consideration of their need to reduce power consumption in both standby and operation mode.

In order to reduce SoC power consumption, one effective method is to eliminate the need for power when the SoC is inactive. However, SoC logic circuits consist of CMOS gates whose data may be lost by removing power. Since important data must be protected even in standby mode, the power supply to some portions of the SoC cannot be cut. Therefore, it is difficult to reduce standby current for an SoC to zero.

Since logic circuits in almost all SoCs consist of clock synchronized circuits, when a DFF becomes nonvolatile, all logic circuits can become nonvolatile. If DFFs are replaced with MFFs and volatile SRAMs are replaced with nonvolatile MRAMs, an SoC can become nonvolatile, which facilitates the design of standby-power-free SoCs.

The FeRAM technology that removes volatility from DFFs has already been in use, but its implementation was confined due to limited write cycles. Furthermore, although the latest SoC operate at 1.2 V or the less, the voltage is too low for ferro-electronic elements of FeRAM to be controlled. Therefore, it is difficult for FeRAM based nonvolatile flip flop DFF to be used as a library tool for automatic layout design of SoCs.

This successful MFF demonstration, however, provides insight into how the above issues can be solved by using MFFs and MRAMs that require 1.2 V or less and have unlimited write endurance. Looking forward, NEC will continue developing original technologies that apply MTJ to SoCs, as the company also aims to demonstrate an SoC integrated with MFFs.

Provided by NEC

Explore further: New oscillator for low-power implantable transcievers

add to favorites email to friend print save as pdf

Related Stories

Highly energy-efficient CMOS logic systems

Feb 25, 2013

Non-volatile bistable memory circuits being developed by Satoshi Sugahara and his team at Tokyo Tech pave the way for highly energy-efficient CMOS logic systems. The details are described in the February ...

Toshiba develops many-core SoC for embedded applications

Jun 15, 2012

Toshiba Corporation today announced the development of an innovative low-power, many-core System-on-a-Chip (SoC) for embedded applications in such areas as automotive products and digital consumer products. ...

New energy-saving flip-flop circuit developed by Toshiba

Feb 21, 2011

Toshiba Corporation today announced that it has developed a new flip-flop circuit using 40nm CMOS process that will reduce power consumption in mobile equipment. Measured data verifies that the power dissipation ...

Recommended for you

US official: Auto safety agency under review

7 hours ago

Transportation officials are reviewing the "safety culture" of the U.S. agency that oversees auto recalls, a senior Obama administration official said Friday. The National Highway Traffic Safety Administration has been criticized ...

Out-of-patience investors sell off Amazon

7 hours ago

Amazon has long acted like an ideal customer on its own website: a freewheeling big spender with no worries about balancing a checkbook. Investors confident in founder and CEO Jeff Bezos' invest-and-expand ...

Ebola.com domain sold for big payout

7 hours ago

The owners of the website Ebola.com have scored a big payday with the outbreak of the epidemic, selling the domain for more than $200,000 in cash and stock.

Hacker gets prison for cyberattack stealing $9.4M

11 hours ago

An Estonian man who pleaded guilty to orchestrating a 2008 cyberattack on a credit card processing company that enabled hackers to steal $9.4 million has been sentenced to 11 years in prison by a federal judge in Atlanta.

Magic Leap moves beyond older lines of VR

12 hours ago

Two messages from Magic Leap: Most of us know that a world with dragons and unicorns, elves and fairies is just a better world. The other message: Technology can be mindboggingly awesome. When the two ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
5 / 5 (1) Jan 05, 2009
pretty cool but still very experimental. SoC means System On a Chip
parker
not rated yet Jan 06, 2009
NEC%u2019s MFF operations really good achive.
RTT
not rated yet Jan 06, 2009
If the writer could have included a few more acronyms the story could have been alot shorter.