Panasonic Develops A Gallium Nitride (GaN) Power Device with A New Junction Structure

Dec 17, 2008

Panasonic today announced the development of a Gallium Nitride (GaN) -based diode with a new junction structure called "Natural Super Junction". The new GaN diode with low operating loss is applicable to a variety of consumer and industrial power switching systems.

The new junction structure consists of multilayered GaN-based semiconductor thin films with different compositions of which each interface produces fixed positive and negative charges by the material's unique polarization. The layered structure acts as an insulator at the reverse bias owing to the complete balancing of the fixed charges so that the breakdown voltage can be increased just by extension of the distance between the two electrodes.

The increase of the number of the multilayer resulting in the increase of the current channels effectively reduces the on-state resistances as well. The proposed device structure is similar to super junction of Si devices in which p-type and n-type layers are alternately stacked. The new junction structure does not require any precise control of the doping concentration in the layers as is necessary for the Si super junction. The high breakdown voltages can be achieved taking advantage of naturally formed fixed charges and thus it can be called natural super junction.

The new GaN-based diode exhibits high breakdown voltage of 9400 V with low on-state resistance of 52 mΩcm2, which reaches the predicted limitation by GaN-based semiconductors for the first time. It is also noted that Panasonic's proprietary formation technique of the electrodes over the recessed structure reduces the contact resistance between the electrodes and the current channels, which greatly helps to reduce the on-state resistances.

Applications for one hundred and twenty four domestic and eighty international patents have been filed. These research and development results have been presented at International Electron Devices Meeting 2008, held at San Francisco, U.S. from December 15 to 17, 2008.

Provided by Panasonic

Explore further: Halogen-free leaded multilayer ceramic capacitors for automotive and general-purpose applications

add to favorites email to friend print save as pdf

Related Stories

Axons' unexpected cytoskeleton structure

Jan 28, 2013

(Phys.org)—The plasma membranes that give cells their shapes are typically upheld by linear meshworks of the protein actin. In contrast, Howard Hughes Medical Institute scientists have now discovered that ...

Recommended for you

How to harness the wind

15 minutes ago

With the abundance of wind in the Great North, one might think that harnessing it would be a breeze. But that isn't the case. Fortunately, a Ryerson researcher has found a way to address the major challenges ...

When Facebook goes down it takes big chunks of the internet with it

35 minutes ago

Checking social networks is a morning ritual for many, and when that routine is disrupted – as it was recently when Facebook's servers went down – its absence can come as a surprise. But what also becomes apparent is that when the world's most popular social network is inaccessible, so t ...

Running fuel cells on bacteria

1 hour ago

Researchers in Norway have succeeded in getting bacteria to power a fuel cell. The "fuel" used is wastewater, and the products of the process are purified water droplets and electricity.

Virtual models to make cities greener

1 hour ago

Making a city or district energy smart is, first and foremost, an exercise in good planning. However, such green planning tools are still in their infancy. The trouble is that every city is different, every ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.