Physicists develop laser with bandwith spanning 2 telecom windows

May 19, 2008

A team of physicists in the Institute for Ultrafast Spectroscopy and Lasers (IUSL) of the Physics Department at The City College of New York (CCNY) have developed new near-infrared broadband laser materials with tunability ranges around triple those of earlier crystals. The new crystals have a tunability range of as much as 460 nanometers (nm) and have potential application in such fields as telecommunications, biomedical imaging and remote sensing.

“For the first time tunable laser operation was achieved at both the 1.33 um (microns) and 1.55 um telecommunication windows from a single optical center in trivalent chromium (Cr3+) doped LiInSiO4 (lithium iridium silicate) (Cr3+:LISO) and LiInGeO4 (lithium iridium germanate) (Cr3+:LIGO) single crystals,” said Dr. Robert R. Alfano, Distinguished Professor of Science and Engineering and Director of IUSL.

The crystals have the widest bandwidth and the most near-infrared shifted wavelength range for laser operation ever demonstrated for the Cr3+ ion, noted Professor Alfano, who earlier this month was awarded The Optical Society of America’s Charles Hard Townes Award for his discovery of and work on the supercontinuum.

The Cr3+:LISO crystal was tunable in the 1,160 nm to 1,620 nm range; the Cr3+:LIGO crystal was tunable in the 1,150 to 1,600 nm range. Fosterite and Cunyite, earlier crystals developed at CCNY, have bandwidths of 165 nm (1,173 nm to 1,338 nm) and 144 nm (1,348 nm to 1,482 nm), respectively.

Because of their strong optical absorption in the range of laser diode pump sources and quantum efficiency of 50 percent, the new materials have promise for use in miniature broadband laser devices for telecommunication industry, biomedical imaging, optical coherence tomography, laser spectroscopy, ultrafast pulse generation and remote sensing, he added.

Source: City College of New York

Explore further: The science behind the ice in Disney's Frozen

add to favorites email to friend print save as pdf

Related Stories

The future of ultrashort laser pulses

Jul 24, 2014

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

New tool, savings for manufacturing hard materials

Jul 17, 2014

"Machining," in particular the process of cutting hard, brittle materials during manufacturing, can be difficult, often because the cutting tool, typically made of single crystal diamond, the hardest material ...

Future electronics may depend on lasers, not quartz

Jul 17, 2014

(Phys.org) —Nearly all electronics require devices called oscillators that create precise frequencies—frequencies used to keep time in wristwatches or to transmit reliable signals to radios. For nearly ...

A narrower spectrum for a wider view of matter

Jul 11, 2014

Condensed matter physicists, who study the physics of solids and liquids, often use a technique called "inelastic scattering," in which they bounce photons or neutrons of selected energy off a material and ...

Highway for ultracold atoms in light crystals

Jul 09, 2014

When a superconductor is exposed to a magnetic field, a current on its surface appears which creates a counter field that cancels the magnetic field inside the superconductor. This phenomenon, known as "Meissner-Ochsenfeld ...

Recommended for you

50-foot-wide Muon g-2 electromagnet installed at Fermilab

Jul 31, 2014

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

User comments : 0