Physicists develop laser with bandwith spanning 2 telecom windows

May 19, 2008

A team of physicists in the Institute for Ultrafast Spectroscopy and Lasers (IUSL) of the Physics Department at The City College of New York (CCNY) have developed new near-infrared broadband laser materials with tunability ranges around triple those of earlier crystals. The new crystals have a tunability range of as much as 460 nanometers (nm) and have potential application in such fields as telecommunications, biomedical imaging and remote sensing.

“For the first time tunable laser operation was achieved at both the 1.33 um (microns) and 1.55 um telecommunication windows from a single optical center in trivalent chromium (Cr3+) doped LiInSiO4 (lithium iridium silicate) (Cr3+:LISO) and LiInGeO4 (lithium iridium germanate) (Cr3+:LIGO) single crystals,” said Dr. Robert R. Alfano, Distinguished Professor of Science and Engineering and Director of IUSL.

The crystals have the widest bandwidth and the most near-infrared shifted wavelength range for laser operation ever demonstrated for the Cr3+ ion, noted Professor Alfano, who earlier this month was awarded The Optical Society of America’s Charles Hard Townes Award for his discovery of and work on the supercontinuum.

The Cr3+:LISO crystal was tunable in the 1,160 nm to 1,620 nm range; the Cr3+:LIGO crystal was tunable in the 1,150 to 1,600 nm range. Fosterite and Cunyite, earlier crystals developed at CCNY, have bandwidths of 165 nm (1,173 nm to 1,338 nm) and 144 nm (1,348 nm to 1,482 nm), respectively.

Because of their strong optical absorption in the range of laser diode pump sources and quantum efficiency of 50 percent, the new materials have promise for use in miniature broadband laser devices for telecommunication industry, biomedical imaging, optical coherence tomography, laser spectroscopy, ultrafast pulse generation and remote sensing, he added.

Source: City College of New York

Explore further: Infrared imaging technique operates at high temperatures

add to favorites email to friend print save as pdf

Related Stories

Quantum hard drive breakthrough

Jan 08, 2015

Physicists developing a prototype quantum hard drive have improved storage time by a factor of more than 100.

A qubit candidate shines brighter

Dec 29, 2014

In the race to design the world's first universal quantum computer, a special kind of diamond defect called a nitrogen vacancy (NV) center is playing a big role. NV centers consist of a nitrogen atom and ...

Recommended for you

Infrared imaging technique operates at high temperatures

Jan 23, 2015

From aerial surveillance to cancer detection, mid-wavelength infrared (MWIR) radiation has a wide range of applications. And as the uses for high-sensitivity, high-resolution imaging continue to expand, MWIR sources are becoming ...

Football physics and the science of Deflategate

Jan 23, 2015

News reports say that 11 of the 12 game balls used by the New England Patriots in their AFC championship game against the Indianapolis Colts were deflated, showing about 2 pounds per square inch (psi) less ...

Physicists find a new way to slow the speed of light

Jan 23, 2015

(Phys.org)—A team of physicists working at the University of Glasgow has found a way to slow the speed of light that does not involve running it through a medium such as glass or water. Instead, as they ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.