Switchyard for single electrons

Feb 25, 2008

German scientists achieved to transfer very small charge "packets", comprising a well-defined number of few electrons, between metallic electrons precisely by using a single-electron pump. A single-electron transistor, being able to resolve charge variations of a single electron or less, served as a charge detector to monitor the charge movement. The successful experiment is an important milestone on the way to the setup of a new standard for capacitance, where a capacitor is charged by a well-known number of electrons.

The corresponding voltage can be measured using a Josephson voltage standard. Tracing the capacitance to a resistance via the quantum-Hall effect finally allows the realisation of the so-called "Quantum Metrological Triangle", which establishes a link between all three electrical quantum effects. The precision aimed at in the experiment requires the demonstrated manipulation of charge on the scale of a single electron.

Task of this metrology project is the implementation of a new capacitance standard which is based on the quantization of electrical charge in units ofthe elementary charge e.

The basic idea of the experiment is to charge a capacitor with a well-known number of n electrons and to measure the resulting electrical voltage U. Thus, the capacitance C of the capacitor is determined by C = ne / U. Accurate "counting" of the electrons occurs with the help of a special Single-Electron Tunneling (SET) circuit, a so-called SET-pump. If the voltage U is measured by using a Josephson voltage standard (U = ifh / 2e), the capacitance C can be expressed exclusively in terms of the fundamental constants e and h, the frequency f and integer numbers (n and i). Thus, the experiment enables electrical capacitance metrology on quantum basis, as it is already usual for the electrical voltage U (using the Josephson effect) and the electrical resistance R(using the quantum Hall effect).

If the experiment is performed with a relative uncertainty of 10-7 (0.1 ppm), it opens a way to realize the "quantum metrological triangle" which is a consistency test for the three electrical quantum effects involved. The results of this experiment will impact on a future system of units which will be based on fundamental constants.

Source: Physikalisch-Technische Bundesanstalt

Explore further: Breakthrough in OLED technology

add to favorites email to friend print save as pdf

Related Stories

Researchers bring clean energy a step closer

2 hours ago

For nearly half a century, scientists have been trying to replace precious metal catalysts in fuel cells. Now, for the first time, researchers at Case Western Reserve University have shown that an inexpensive metal-free catalyst ...

Barclays to allow payments by using Twitter handles

2 hours ago

The next chapter in banks moving into the digital age is a stretch beyond reminding customers over phone lines that they can also bank online. Barclays has launched Twitter payments through Pingit.

Predicting human crowds with statistical physics

2 hours ago

For the first time researchers have directly measured a general law of how pedestrians interact in a crowd. This law can be used to create realistic crowds in virtual reality games and to make public spaces safer.

Recommended for you

Breakthrough in OLED technology

15 hours ago

Organic light emitting diodes (OLEDs), which are made from carbon-containing materials, have the potential to revolutionize future display technologies, making low-power displays so thin they'll wrap or fold ...

Throwing light on a mysterious human 'superpower'

18 hours ago

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.