NEC Develops New Full Low-k Cu-interconnect Structure

Dec 13, 2007

NEC have developed a new Silica-Carbon Composite (SCC) film capable of blocking Cu-atom diffusion into the dielectric films of LSI interconnects. Use of the SCC film establishes an ultimate full-low-k (FLK) Cu interconnect structure that realizes a reduction in active power consumption in LSI interconnects.

The successful development of this FLK Cu interconnect can be attributed to extensive research and development on molecular nanotechnology manipulating the molecular structure and novel plasma-enhanced deposition technology.

Main features of the newly developed FLK interconnect:

(1) The new low-k barrier dielectric SCC film has been developed based on molecular nanotechnology, which has a composite structure of unsaturated C=C molecular bonds and the conventional silica backbone structure to prevent Cu diffusion into the interlayer dielectric (ILD) films. The dielectric constant (k) was decreased to 35% that of conventional barrier dielectrics.

(2) A special stabilization process of the Cu metal surface proved that the SCC film capping the Cu lines maintained excellent insulation reliability, even after reducing the film thickness down to several tens of a nanometer.

(3) All of the parts of the insulating film in the FLK Cu interconnect consisted of low-k films, of which robust Molecular-Pore-Stack (MPS) low-k film with stable sub-nanometer-sized pores was deposited continuously on the SCC film on top of the underlying Cu lines.

(4) Parasitic capacitance as a source of active power consumption in the LSI interconnects was reduced by 11% as compared to the reference low-k Cu interconnects without SCC film, and reliability was improved.

The newly developed FLK Cu interconnect has an ultimate structure making it applicable not only to leading-edge 32nm-node CMOS devices, but also to all kinds of conventional CMOS devices to realize low power consumption and high reliability. CMOS LSI devices with FLK Cu interconnects are expected to realize high performance IT/network equipment with very low power consumption, such as broadband wireless terminal devices, high speed and multi-task servers and low power microcomputers for automobile applications.

As a result of device scaling, a rapid increase in parasitic capacitance among closely-spaced multilayer interconnects induces undesirable active power consumption. Therefore, a solution to suppress parasitic capacitance has been long sought after. LSI multi-level Cu interconnects are isolated by two kinds of dielectric film, such as the interlayer dielectric (ILD) films isolating the Cu lines themselves and the barrier dielectric films that directly cover the Cu lines to prevent diffusion of Cu atoms into the ILD films.

Extensive research and development has been carried out to establish low-k ILD films such as porous materials. However, it has been difficult for barrier dielectrics to fulfill both the requirements of low k-value and perfect blocking properties because the latter property is usually diminished by reducing the k-value or essentially the film density.

The newly-developed low-k SCC film blocks migration of the Cu atoms, where its blocking mechanism is likely to be the capture of Cu atoms by the unsaturated carbon bonds in the SCC film. The FLK Cu interconnect features a seamless stack of MPS ILD film and SCC barrier dielectrics on the Cu lines, which are desired for low power and high speed signal processing in ubiquitous-network applications.

Source: NEC

Explore further: Renesas announces SRAM using leading-edge 16 nm FinFET for automotive information systems

add to favorites email to friend print save as pdf

Related Stories

Deforestation threatens species richness in streams

17 minutes ago

With a population of 1.3 billion, China is under immense pressure to convert suitable areas into arable land in order to ensure a continued food supply for its people. Accordingly, China is among the top ...

Researchers discover protein protecting against chlorine

30 minutes ago

Chlorine is a common disinfectant that is used to kill bacteria, for example in swimming pools and drinking water supplies. Our immune system also produces chlorine, which causes proteins in bacteria to lose ...

Website shines light on renewable energy resources

47 minutes ago

A team from the University of Arizona and eight southwestern electric utility companies have built a pioneering web portal that provides insight into renewable energy sources and how they contribute to the ...

Recommended for you

Impoverished North Korea falls back on cyber weapons

4 hours ago

As one of the world's most impoverished powers, North Korea would struggle to match America's military or economic might, but appears to have settled on a relatively cheap method to torment its foe.

Five ways to make your email safer in case of a hack attack

4 hours ago

The Sony hack, the latest in a wave of company security breaches, exposed months of employee emails. Other hacks have given attackers access to sensitive information about a company and its customers, such as credit-card ...

2012 movie massacre hung over 'Interview' decision

5 hours ago

When a group claiming credit for the hacking of Sony Pictures Entertainment threated violence against theaters showing "The Interview" earlier this week, the fate of the movie's big-screen life was all but ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.