New particles get a mass boost

Oct 01, 2007

A sophisticated, new analysis has revealed that the next frontier in particle physics is farther away than once thought. New forms of matter not predicted by the Standard Model of particle physics are most likely twice as massive as theorists had previously calculated, according to a just-published study.

The discovery is noteworthy because experimental improvements of this magnitude rarely occur more often than once in a decade.

To see the infinitely small bits of matter that make up our universe, physicists build ever more powerful accelerators, which are the microscopes they use to see matter. But while the trend is to more powerful accelerators, the precision achieved by some less powerful ones can pinpoint the best places to look for never-before-seen particles.

Scientists at the Department of Energy's Thomas Jefferson National Accelerator Facility combined data from experiments in which electrons were used to precisely probe the nucleus of the atom. The experiments were designed to study the weak nuclear force, one of the four forces of nature. The effects of the weak force on the building blocks of the proton, up and down quarks, were determined precisely from this data and were found to be in agreement with predictions.

But when this new analysis was combined with other measurements, it raised the predicted mass scale for the discovery of new particles to about one Tera-electron-volts (1 TeV) - more than a factor of two higher than previously thought, according to Jefferson Lab scientists who published the result in Physical Review Letters.

Searches for new particles can take the form of direct production of new particles by high-energy interactions or by lower-energy, extremely precise measurements of experimental observables, which are sensitive to the existence of new particles beyond the ability of existing theories to predict.

Source: Jefferson Lab

Explore further: Hide and seek: Sterile neutrinos remain elusive

add to favorites email to friend print save as pdf

Related Stories

New technology tracks tiniest pollutants in real time

Sep 26, 2014

Researchers may soon have a better idea of how tiny particles of pollution are formed in the atmosphere. These particles, called aerosols, or particulate matter (PM), are hazardous to human health and contribute ...

Scientific instruments of Rosetta's Philae lander

Sep 23, 2014

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

Quantum mechanics to charge your laptop?

Sep 18, 2014

Top scientists from UC Berkeley and MIT found the expertise they lacked at FIU. They invited Sakhrat Khizroev, a professor with appointments in both medicine and engineering, to help them conduct research ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

15 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

19 hours ago

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

22 hours ago

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 0