New particles get a mass boost

Oct 01, 2007

A sophisticated, new analysis has revealed that the next frontier in particle physics is farther away than once thought. New forms of matter not predicted by the Standard Model of particle physics are most likely twice as massive as theorists had previously calculated, according to a just-published study.

The discovery is noteworthy because experimental improvements of this magnitude rarely occur more often than once in a decade.

To see the infinitely small bits of matter that make up our universe, physicists build ever more powerful accelerators, which are the microscopes they use to see matter. But while the trend is to more powerful accelerators, the precision achieved by some less powerful ones can pinpoint the best places to look for never-before-seen particles.

Scientists at the Department of Energy's Thomas Jefferson National Accelerator Facility combined data from experiments in which electrons were used to precisely probe the nucleus of the atom. The experiments were designed to study the weak nuclear force, one of the four forces of nature. The effects of the weak force on the building blocks of the proton, up and down quarks, were determined precisely from this data and were found to be in agreement with predictions.

But when this new analysis was combined with other measurements, it raised the predicted mass scale for the discovery of new particles to about one Tera-electron-volts (1 TeV) - more than a factor of two higher than previously thought, according to Jefferson Lab scientists who published the result in Physical Review Letters.

Searches for new particles can take the form of direct production of new particles by high-energy interactions or by lower-energy, extremely precise measurements of experimental observables, which are sensitive to the existence of new particles beyond the ability of existing theories to predict.

Source: Jefferson Lab

Explore further: Physicists solve longstanding puzzle of how moths find distant mates

add to favorites email to friend print save as pdf

Related Stories

Monitoring carbon movement

Oct 10, 2014

Studying the movement of carbon dioxide into the deep ocean to improve climate projections and understanding of deep-sea ecosystems will be the focus of a two-year research project by a University of Maine ...

Fermilab's 500-mile neutrino experiment up and running

Oct 06, 2014

(Phys.org) —It's the most powerful accelerator-based neutrino experiment ever built in the United States, and the longest-distance one in the world. It's called NOvA, and after nearly five years of construction, ...

Recommended for you

'Attosecond' science breakthrough

18 minutes ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

Work on pioneering pan-European neutron facility underway

49 minutes ago

A state-of-the-art facility capable of generating neutron beams 30 times brighter than current facilities is about to be constructed in the Swedish town of Lund. The EUR 1.8 billion will help scientists examine ...

Synchrotron upgrade to make X-rays even brighter

2 hours ago

(Phys.org) —The X-rays produced by the Cornell High Energy Synchrotron Source (CHESS) are bright, but they will soon be even brighter, thanks to a major upgrade that will make the quality of CHESS' X-rays ...

User comments : 0