Pioneering 3D view of near-Earth magnetic 'dance'

Jun 29, 2007
Pioneering 3D view of near-Earth magnetic 'dance'
A diagram illustrating the null-null line observed by Cluster’s four spacecraft in the Earth’s magnetotail on 1 October 2001. Credits: Inset: Chinese Academy of Sciences (C. Xiao), background: NASA

Scientists have obtained the first-ever 3D picture of interconnected magnetic ‘dances’ in near-Earth space, known as magnetic reconnection events.

The data from ESA’s Cluster satellites will help to understand better magnetic reconnection, a process related to star formation, solar explosions and the entry of solar wind energy into the near-Earth environment.

Magnetic reconnection is the process whereby magnetic field lines from different magnetic domains collide and reconnect, mixing previously separated plasma. Plasma is a gas composed of ions and electrons but is electrically neutral, spread over large distances in space and guided by the action of magnetic and electric fields.

Magnetic reconnection converts the energy of the magnetic field into particle energy, generating jets and heating the plasma.

This affects us here on Earth because it can possibly affect telecom satellites and prevent the efficient production of electricity in controlled fusion reactors. On Earth, we can also see the effect in more intense displays of the Northern lights.

On 1 October 2001, the four Cluster spacecraft were flying in formation at approximately 110 000 km from Earth in the magnetotail, a long-tail-like structure on the night-side of Earth’s magnetic field. The satellites meandered around a reconnection region over a period of nearly 15 minutes.

During reconnection, the geometry of the magnetic field forms an X-shape, also called a ‘magnetic null’. Analysed in 2D, the magnetic field, plasma density and flow velocity data collected during this event showed that only one reconnection region with an X-shape, or a magnetic null, was seen by the satellites.

An international team of scientists led by Chinese researchers challenged this result, suggesting that it could be seen in 3D.

The researchers tested theoretical results published 20 years ago, which predicted that any small perturbation to such a reconnection site would produce not one, but two magnetically linked reconnection sites, a pair of magnetic nulls and magnetically linked reconnection geometry.

By analysing a subset of the same data in 3D with a higher temporal resolution, they found what they were looking for. Two magnetic reconnection sites jumped out, along with the null-null line which connects two magnetic nulls, a previously unobserved phenomenon.

The situation can be compared to viewing a cross section of a 3D volume in space. It is not possible, when looking into only one plane, to tell whether or not something is going on in another plane, in the same volume of space.

Only when seen in 3D, with Cluster’s multi-satellite viewpoints, could scientists determine that there actually were two, interlinked events occurring simultaneously.

When reduced to two dimensions, this complex 3D magnetic geometry is still consistent with past results obtained under the 2D assumption where the null-null line is seen as one X-point. It is also in agreement with past results found in the laboratory and by Cluster in space.

"For the first time, the link between two sites of magnetic reconnection has been observed in-situ, in 3-D. This result is another major scientific achievement of Cluster obtained owing to fruitful scientific collaborations between Chinese, American and European scientists", said Philippe Escoubet, Cluster and Double Star project scientist of the European Space Agency.

The article “Satellite Observations of Separator Line Geometry of Three-Dimensional Magnetic Reconnection” by C. Xiao, X. Wang, Z. Pu, Z. Ma, H. Zhao, G. Zhou, J. Wang, M. Kivelson, S. Fu, Z. Liu, Q. Zong, M. Dunlop, K-H. Glassmeier, E. Lucek, H. Rème, I. Dandouras, C. Escoubet appeared on 24 June 2007 in the advance online publication of Nature Physics.

Source: ESA

Explore further: Exploring X-ray phase tomography with synchrotron radiation

add to favorites email to friend print save as pdf

Related Stories

Observing the onset of a magnetic substorm

Sep 02, 2014

Magnetic substorms, the disruptions in geomagnetic activity that cause brightening of aurora, may sometimes be driven by a different process than generally thought, a new study in the Journal of Geophysical Research: Space Ph ...

The solar wind breaks through the Earth's magnetic field

Jun 10, 2014

Space is not empty. A wind of charged particles blows outwards from the Sun, carrying a magnetic field with it. Sometimes this solar wind can break through the Earth's magnetic field. Researchers at the Swedish ...

The solar wind is swirly

Dec 19, 2012

(Phys.org)—Using ESA's Cluster quartet of satellites as a space plasma microscope, scientists have zoomed in on the solar wind to reveal the finest detail yet, finding tiny turbulent swirls that could play ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

4 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

4 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

5 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 0