Toshiba Develops New NAND Flash Technology

Jun 12, 2007
Toshiba Develops New NAND Flash Technology
The structure of the new memory cell.

Toshiba Corporation today announced a new three dimensional memory cell array structure that enhances cell density and data capacity without relying on advances in process technology, and with minimal increase in the chip die size. In the new structure, pillars of stacked memory elements pass vertically through multi-stacked layers of electrode material and utilize shared peripheral circuits. The innovative design is a potential candidate technology for meeting future demand for higher density NAND flash memory.

Typically, advances in memory density reflect advances in process technology. Toshiba’s new approach is based on innovations in the stacking process. Existing memory stacking technologies simply stack two-dimensional memory array on top of another, repeating the same set of processes.

While this achieves increased memory cell density, it makes the manufacturing process longer and more complex. The new array does increase memory cell density, is easier to fabricate, and does not produce much increase in chip area, as peripheral circuits are shared by several silicon pillars.

Toshiba’s cutting edge etching technology drives a through-hole down through a stacked substrate, i.e. a multi-layer sandwich of gate electrodes and insulator films. Pillars of silicon lightly doped with impurities are deposited to fill in the holes. The gate electrode wraps around the silicon pillar at even intervals, and a pre-formed nitride film for data-retention, set in each joint, functions as a NAND cell.

Toshiba's new method has a SONOS structure-- silicon-oxide-nitride-oxide- silicon --and the electrical charge is held in the silicon-nitride film, which is formed inside gate holes. Traps are formed to lock the electrical charge inside the silicon-nitride film.

NAND flash memory functions through batch processing of cells, in large numbers of elements connected in series. Toshiba’s new array increases density without increasing chip dimension, as the number of connected elements increases in direct proportion to stack height. For example, a 32-layer stack realizes 10 times the integration of a standard chip formed with the same generation of technology.

Toshiba will further develop this elemental technology to the level where it matches current structures in terms of security and reliability.

This announcement was presented in the VLSI symposium on June 12.

Source: Toshiba

Explore further: Ultra-low consumption for the future of electronics

add to favorites email to friend print save as pdf

Related Stories

Researchers build first 3D magnetic logic gate

Aug 08, 2014

(Phys.org) —The integrated circuits in virtually every computer today are built exclusively from transistors. But as researchers are constantly trying to improve the density of circuits on a chip, they ...

A new multi-bit 'spin' for MRAM storage

Jul 22, 2014

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

Rice's silicon oxide memories catch manufacturers' eye

Jul 10, 2014

(Phys.org) —Rice University's breakthrough silicon oxide technology for high-density, next-generation computer memory is one step closer to mass production, thanks to a refinement that will allow manufacturers ...

Recommended for you

AOL to feed more video, news to Microsoft's MSN

2 hours ago

AOL will provide Microsoft's MSN with more video and additional news stories from popular sites such as The Huffington Post and TechCrunch in an expansion of a deal aimed at selling more digital advertising.

First self-contained step dimming LED tube

5 hours ago

Samsung Electronics today introduced the industry's first AC Direct step-dimming LED linear replacement for T8 and T12 fluorescent tubes at the National Electrical Contractors Association (NECA) Convention ...

User comments : 0