Toshiba Develops New NAND Flash Technology

Jun 12, 2007
Toshiba Develops New NAND Flash Technology
The structure of the new memory cell.

Toshiba Corporation today announced a new three dimensional memory cell array structure that enhances cell density and data capacity without relying on advances in process technology, and with minimal increase in the chip die size. In the new structure, pillars of stacked memory elements pass vertically through multi-stacked layers of electrode material and utilize shared peripheral circuits. The innovative design is a potential candidate technology for meeting future demand for higher density NAND flash memory.

Typically, advances in memory density reflect advances in process technology. Toshiba’s new approach is based on innovations in the stacking process. Existing memory stacking technologies simply stack two-dimensional memory array on top of another, repeating the same set of processes.

While this achieves increased memory cell density, it makes the manufacturing process longer and more complex. The new array does increase memory cell density, is easier to fabricate, and does not produce much increase in chip area, as peripheral circuits are shared by several silicon pillars.

Toshiba’s cutting edge etching technology drives a through-hole down through a stacked substrate, i.e. a multi-layer sandwich of gate electrodes and insulator films. Pillars of silicon lightly doped with impurities are deposited to fill in the holes. The gate electrode wraps around the silicon pillar at even intervals, and a pre-formed nitride film for data-retention, set in each joint, functions as a NAND cell.

Toshiba's new method has a SONOS structure-- silicon-oxide-nitride-oxide- silicon --and the electrical charge is held in the silicon-nitride film, which is formed inside gate holes. Traps are formed to lock the electrical charge inside the silicon-nitride film.

NAND flash memory functions through batch processing of cells, in large numbers of elements connected in series. Toshiba’s new array increases density without increasing chip dimension, as the number of connected elements increases in direct proportion to stack height. For example, a 32-layer stack realizes 10 times the integration of a standard chip formed with the same generation of technology.

Toshiba will further develop this elemental technology to the level where it matches current structures in terms of security and reliability.

This announcement was presented in the VLSI symposium on June 12.

Source: Toshiba

Explore further: Silicon Valley marks 50 years of Moore's Law

Related Stories

Zensors: Making sense with live question feeds

12 hours ago

Getting answers to what you really want to ask, beyond if the door is open or shut, could be rather easy. A video on YouTube demonstrates something called Zensors. Started at Carnegie Mellon last year and ...

Recommended for you

Supermarkets welcome cold-comfort edge of F1 aerofoils

4 hours ago

UK-based Williams Advanced Engineering, the technology and engineering services business of the Williams Group, has collaborated with UK-based Aerofoil Energy to develop an aerodynamic device that can reduce ...

'Map spam' puts Google in awkward place

Apr 24, 2015

Google was re-evaluating its user-edited online map system Friday after the latest embarrassing incident—an image of an Android mascot urinating on an Apple logo.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.