This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

proofread

'Metaholograms': Researchers develop a new type of hologram

K-space translation strategy lets metasurfaces project multiple images without crosstalk
Depending on the azimuthal angle and polarization state of guided incident light, the metahologram can selectively project six independent single-color images or two full-color images. Credit: Zeyang Liu, Hao Gao, Taigao Ma, Vishva Ray, Niu Liu, Xinliang Zhang, L. Jay Guo, and Cheng Zhang

Researchers have developed a new type of hologram, known as "metaholograms," capable of projecting multiple high-fidelity images free of crosstalk. This breakthrough paves the way for next-generation technologies including virtual/augmented reality (AR/VR) displays, information storage, and image encryption.

The work is published in the journal eLight.

Metaholograms offer several advantages over traditional holograms, including broader operational bandwidth, higher imaging resolution, wider viewing angle, and more compact size. However, a major challenge for metaholograms has been their limited information capacity that only allows to project a few independent images.

Existing methods typically can provide a small number of channels and often suffer from inter-channel crosstalk during image projections.

To overcome this limitation, the new research introduces an innovative approach based on the k-space translation design strategy, enabling multiple target images to seamlessly switch between "displayed" and "hidden" states. The proposed metahologram employs the geometric phase encoding method and consists of millions of subwavelength-scale poly-silicon nanopillars, each measuring approximately 100 nm, all identical in size but with spatially varying rotation angles.

The device further incorporates a planar glass waveguide to convey and leverages properties such as polarization and angle to switch the projection of up to six unique high-fidelity images without crosstalk. Additionally, the researchers have created a two-channel full-color metahologram and even an eighteen-channel metahologram using a combination of different multiplexing techniques.

  • K-space translation strategy lets metasurfaces project multiple images without crosstalk
    (a) Schematic diagram of the experimental system for single-color imaging. (b) Experimental results of the waveguide-based six-channel metahologram. Six crosstalk-free holographic images (capital letters "A" to "F") are selectively projected when the metahologram is illuminated by a guided incident light with different azimuthal angles (0°, 60°, and 120°) and spin states (right circular polarization and left circular polarization). Credit: Zeyang Liu, Hao Gao, Taigao Ma, Vishva Ray, Niu Liu, Xinliang Zhang, L. Jay Guo, and Cheng Zhang
  • K-space translation strategy lets metasurfaces project multiple images without crosstalk
    (a) Schematic diagram of the experimental system for full-color imaging. (b) Experimental results of the waveguide-based full-color metahologram. Two crosstalk-free full-color holographic images ("lilac" and "rose") are selectively projected when the metahologram is illuminated simultaneously by red, green, and blue guided incident lights all having right circular polarization or left circular polarization. Credit: Zeyang Liu, Hao Gao, Taigao Ma, Vishva Ray, Niu Liu, Xinliang Zhang, L. Jay Guo, and Cheng Zhang

This innovation has the potential to significantly improve AR/VR displays by enabling the projection of more complex and realistic scenes. It also holds promise for applications in image encryption, where the information is encoded into multiple holographic channels for enhanced security.

The research is a significant step forward in developing high-performance metaholograms with a vastly increased information capacity. This study paves the way for exciting new possibilities in various fields, from advanced displays to information encryption and .

More information: Zeyang Liu et al, Broadband spin and angle co-multiplexed waveguide-based metasurface for six-channel crosstalk-free holographic projection, eLight (2024). DOI: 10.1186/s43593-024-00063-9

Journal information: eLight

Citation: 'Metaholograms': Researchers develop a new type of hologram (2024, May 30) retrieved 18 June 2024 from https://phys.org/news/2024-05-metaholograms-hologram.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Novel method for controlling light polarization uses liquid crystals to create holograms

98 shares

Feedback to editors